In vitro and in vivo anti-allergic effects of ‘benifuuki’ green tea containing O-methylated catechin and ginger extract enhancement

Abstract

‘Benifuuki’, a tea (Camellia Sinensis L.) cultivar in Japan, is rich in anti-allergic epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me). ‘Benifuuki’ green tea and simultaneous addition of ginger extract remarkably suppressed cytokine (TNF-α and MIP-1α) secretion from mouse bone marrow-derived mast cells after antigen stimulation and, as expected, suppressed delay-type allergy. After drinking ‘benifuuki’ green tea containing 43.5 mg of EGCG and 8.5 mg of EGCG3″Me, the AUC (area under the drug concentration time curve; min μg/ml) of EGCG was 6.72 ± 2.87 and EGCG3″Me was 8.48 ± 2.54 in healthy human volunteers. Though the dose of EGCG was 5.1 times the dose of EGCG3″Me, the AUC of EGCG3″Me was higher than that of EGCG. A double blind clinical study on subjects with Japanese cedar pollinosis was carried out. At the 11th week after starting the study, in the most severe cedar pollen scattering period, symptoms, i.e., blowing the nose and itching eyes, were significantly relieved in the ‘benifuuki’ intake group compared with the placebo group, and blowing the nose, itching eyes and nasal symptom score, and at the 11th and 13th weeks, stuffy nose, throat pain and the nasal symptom medication score were significantly relieved in the ‘benifuuki’ containing ginger extract group compared with the placebo group. These results suggested that over one consecutive month, drinking ‘benifuuki’ green tea was useful to reduce some of the symptoms from Japanese cedar pollinosis, and did not affect any normal immune response in subjects with seasonal rhinitis, and the ginger extract enhanced the effect of ‘benifuuki’ green tea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

EGCG:

Epigallocatechin-3-O-gallate

EGCG3″Me:

Epigallocatechin-3-O-(3-O-methyl) gallate

AUC:

Area under the drug concentration time curve

References

  1. Ahmad N, Cheng P, Mukhtar H (2000) Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 275:328–334

    Article  CAS  Google Scholar 

  2. Beaven MA, Metzger H (1993) Signal transduction by Fc receptors: the Fc epsilon RI case. Immunol Today 14:222–226

    Article  CAS  Google Scholar 

  3. Bors W, Saran M (1987) Radical scavenging by flavonoid antioxidants. Free Radic Res Commun 2(4–6):289–294

    Article  CAS  Google Scholar 

  4. Cao Y, Cao R (1999) Angiogenesis inhibited by drinking tea. Nature 398:381–382

    Article  CAS  Google Scholar 

  5. Chisaka T, Matsuda H, Kubomura Y, Mochizuki M, Yamamura J, Fujimura H (1988) The effect of crude drugs on experimental hypercholesteremia: mode of action of (−)-epigallocatechin gallate in tea leaves. Chem Pharm Bull 36:227–233

    CAS  Google Scholar 

  6. Chow H-HS, Cai Y, Alberts DS, Hakim I, Dorr R, Shahi F, Crowell JA, Yang CS, Hara Y (2001) Phase I pharmacokinetics study of tea polyohenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomarkers Prev 10:53–58

    CAS  Google Scholar 

  7. Chow H-HS, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks IA, Dorr RT, Hara Y, Akberts DS (2003) Pharmacokinetics and study of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clinical Cancer Res 9:3312–3319

    CAS  Google Scholar 

  8. Fujimura Y, Tachibana H, Maeda-Yamamoto M, Miyase T, Sano M, Yamada K (2002) Antiallergic tea catechin: (−)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FcepsilonRI expression in human basophilic KU812 cells. J Agric Food Chem 50:5729–5730

    Article  CAS  Google Scholar 

  9. Fukai K, Ishigami T, Hara Y (1991) Antibacterial activity of tea polyphenols against phytopathogenic bacteria. Agric Biol Chem 55:1895–1897

    CAS  Google Scholar 

  10. Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11:53–59

    Article  CAS  Google Scholar 

  11. Grzanna R, Lindmark L, Frondoza CG (2005) Ginger -an herbal medicinal product with broad anti-inflammatory actions. J Med Food 8(2):125–132

    Article  CAS  Google Scholar 

  12. Hashimoto F, Ono M, Masuoka C, Ito Y, Sakata Y, Shimizu K, Nonaka G, Nishioka I, Nohara T (2003) Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem 67:396–401

    Article  CAS  Google Scholar 

  13. Hattori M, Kusumoto I, Namba T, Ishigami T, Hara Y (1990) Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem Pharm Bull (Tokyo) 38:717–720

    CAS  Google Scholar 

  14. Isemura M, Suzuki Y, Satoh K, Narumi K, Motomiya M (1993) Effects of catechins on the mouse lung carcinoma cell adhesion to the endothelial cells. Cell Biol Int 17:559–564

    Article  CAS  Google Scholar 

  15. Iwasa K, Torii H (1962) A colorimetric determination of tea tannin with ferrous tartrate. Stud Tea 26:87–91

    Google Scholar 

  16. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2:773–786

    Article  CAS  Google Scholar 

  17. Kimura M, Umegaki K, Kasuya Y, Sugisawa A, Higuchi M (2002) The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur J Clin Nutr 56:1186–1193

    Article  CAS  Google Scholar 

  18. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972

    Article  CAS  Google Scholar 

  19. Kuroda Y, Hara Y (1999) Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res 436:69–97

    Article  CAS  Google Scholar 

  20. Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523:201–208

    Google Scholar 

  21. Lin JK, Liang YC, Lin-Shiau SY (1999) Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58:911–915

    Article  CAS  Google Scholar 

  22. Maeda-Yamamoto M, Kawahara H, Matsuda N, Nesumi K, Sano M, Tsuji K, Kawakami Y, Kawakami T (1998) Effects of tea infusions of various varieties or different manufacturing types on inhibition of mouse mast cell activation. Biosci Biotechnol Biochem 62:2277–2279

    Article  CAS  Google Scholar 

  23. Maeda-Yamamoto M, Kawahara H, Tahara N, Tsuji K, HaraY, Isemura M (1999) Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47:2350–2354

    Article  CAS  Google Scholar 

  24. Maeda-Yamamoto M, Sano M, Matsuda N, Miyase T, Kawamoto K, Suzuki N, Yoshimura M, Tachibana H, Hakamata K (2001) The change of epigallocatechin-3-O-(3-O-methyl) gallate contents in tea of different varieties, tea seasons of crop and processing method. J Jpn Food Sci Tech 48:64–68

    CAS  Google Scholar 

  25. Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, Isemura M (2003) Association of suppression of ERK phosphorylation by EGCG with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. J Agric Food Chem 51:1858–1863

    Article  CAS  Google Scholar 

  26. Maeda-Yamamoto M, Inagaki N, Kitaura J, Chikumoto T, Kawahara H, Kawakami Y, Sano M, Miyase T, Tachibana H, Nagai H, Kawakami T (2004) O-methylated catechins from tea leaves, inhibit multiple protein kinases in mast cells. J Immunol 172:4486–4492

    CAS  Google Scholar 

  27. Matsumoto N, Okushio K, Hara Y (1998) Effect of black tea polyphenols on plasma lipids in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 44:337–342

    CAS  Google Scholar 

  28. Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 26:1459–1464

    Article  CAS  Google Scholar 

  29. Okubo T, Ishihara N, Okura A, Serit M, Kim M, Yamamoto T, Mitsuoka T (1992) In vitro effects of tea polyphenols intake on human intestinal microflora and metabolism. Biosci Biotechnol Biochem 56:588–591

    CAS  Article  Google Scholar 

  30. Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi S (1983) Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem Pharm Bull 32:1625–1631

    Google Scholar 

  31. Sakanaka S, Shiumua N, Masumi M, Kim M, Yamamoto T (1992) Preventive effect of green tea polyphenols against dental caries in conventional rats. Biosci Biotechnol Biochem 56:592–594

    CAS  Article  Google Scholar 

  32. Sano M, Suzuki M, Miyase T, Yoshino K, Maeda-Yamamoto M (1999) Novel antiallergic catechin derivatives isolated from oolong tea. J Agric Food Chem 47:1906–1910

    Article  CAS  Google Scholar 

  33. Sazuka M, Murakami S, Isemura M, Satoh K, Nukiwa T (1995) Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells. Cancer Lett 98:27–31

    CAS  Google Scholar 

  34. Sazuka M, Imazawa H, Shoji Y, Mita T, Hara Y, Isemura M (1997) Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins. Biosci Biotechnol Biochem 61:1504–1506

    CAS  Article  Google Scholar 

  35. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H (1999) Green tea and cancer chemoprevention. Mutat Res 428:339–344

    CAS  Google Scholar 

  36. Suzuki M, Yoshino K, Maeda-Yamamoto M, Miyase T, Sano M (2000) Inhibitory effects of tea catechins and O-methylated derivatives of (−)-epigallocatechin-3-O-gallate on mouse Type-IV allergy. J Agric Food Chem 48:5649–5653

    Article  CAS  Google Scholar 

  37. Tachibana H, Kubo T, Miyase T, Tanino S, Yoshimoto M, Sano M, Maeda-Yamamoto M, Yamada K (2001) Identification of an Inhibitor for interleukin 4-induced e germline transcription and antigen-specific IgE production in vivo. Biochem Biophys Res Commun 280:53–60

    Article  CAS  Google Scholar 

  38. Thomson M, Al-Qattan KK, Al-Sawan SM, Alnaqeeb MA, Khan I, Ali M (2002) The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essent Fatty Acids 67(6):475–478

    Article  CAS  Google Scholar 

  39. Yokozawa T, Okura H, Sakanaka S, Ishigaki S, Kim M (1994) Depressor effect of tannin in green tea on rats with renal hypertension. Biosci Biotechnol Biochem 58:855–858

    CAS  Google Scholar 

  40. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol 96(1–2):207–210

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mari Maeda-Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maeda-Yamamoto, M., Ema, K. & Shibuichi, I. In vitro and in vivo anti-allergic effects of ‘benifuuki’ green tea containing O-methylated catechin and ginger extract enhancement. Cytotechnology 55, 135 (2007). https://doi.org/10.1007/s10616-007-9112-1

Download citation

Keywords

  • Anti-allergic effect
  • Mast cell
  • Bioavailability
  • Seasonal allergic rhinitis
  • ‘Benifuuki’ green tea
  • O-methylated catechin