Advertisement

Cytotechnology

, Volume 54, Issue 1, pp 5–14 | Cite as

Generation of retroviruses for the overexpression of cytosolic and mitochondrial glutathione reductase in macrophages in vivo

  • Marta Kisgati
  • Reto AsmisEmail author
Original Research
  • 81 Downloads

Abstract

Retroviral gene transfer and bone marrow transplantation has been used by many investigators to study the role of macrophage proteins in different mouse models of human disease. While this approach is faster and less expensive than generating transgenic mice with macrophage-specific promoters and applicable to a wider array of mouse models, it has been hampered by two major drawbacks: labor-intensive cloning procedures involved in generating retroviral vectors for each gene of interest and low viral titers. Here we describe the construction of a MSCV-based retroviral vector that can serve as an acceptor vector for commercially available Cre-lox-compatible donor vectors. Using this new retroviral vector in combination with a FACS approach to enhance viral titers, we generated high-titer retroviruses carrying either EGFP-tagged cytosolic or EGFP-tagged mitochondria-targeted glutathione reductase. We show that the introduction of these constructs via retroviral gene transfer and bone marrow transplantation into atherosclerosis-prone LDL receptor-null mice results in the long-term increase in macrophage glutathione reductase activity.

Keywords

Retrovirus Gene Transfer Glutathione Reductase Macrophage Atherosclerosis 

Notes

Acknowledgements

We would like to thank Jill Chelowa and Li Xu for their technical assistance. This work was supported by grants to R.A. from the National Institutes of Heath (HL-70963) and the American Heart Association (455176B).

References

  1. Asmis R, Wang Y, Xu L, Kisgati M, Begley JG, Mieyal JJ (2005) A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J 19:1866–1868PubMedGoogle Scholar
  2. Asmis R, Qiao M, Rossi RR, Cholewa J, Xu L, Asmis LM (2006) Adriamycin promotes macrophage dysfunction in mice. Free Radic Biol Med 41:165–174PubMedCrossRefGoogle Scholar
  3. Brenner MK, Cunningham JM, Sorrentino BP, Heslop HE (1995) Gene transfer into human hemopoietic progenitor cells. Br Med Bull 51:167–191PubMedGoogle Scholar
  4. Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962PubMedCrossRefGoogle Scholar
  5. Daugherty A, Kosswig N, Cornicelli JA, Whitman SC, Wolle S, Rateri DL (2001) Macrophage-specific expression of class A scavenger receptors enhances granuloma formation in the absence of increased lipid deposition. J Lipid Res 42:1049–1055PubMedGoogle Scholar
  6. Dunbar CE, Emmons RV (1994) Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells 12:563–576PubMedCrossRefGoogle Scholar
  7. Einerhand MP, Valerio D (1992) Gene transfer into hematopoietic stem cells: prospects for human gene therapy. Curr Top Microbiol Immunol 177:217–235PubMedGoogle Scholar
  8. George DL, Francke U (1976) Gene dose effect: regional mapping of human glutathione reductase on chromosome 8. Cytogenet Cell Genet 17:282–286PubMedGoogle Scholar
  9. Ghesquiere SA, Gijbels MJ, Anthonsen M, van Gorp PJ, van der Made I, Johansen B, Hofker MH, de Winther MP (2005) Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 46:201–210PubMedCrossRefGoogle Scholar
  10. Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516PubMedCrossRefGoogle Scholar
  11. Hasty AH, Linton MF, Brandt SJ, Babaev VR, Gleaves LA, Fazio S (1999) Retroviral gene therapy in ApoE-deficient mice––ApoE expression in the artery wall reduces early foam cell lesion formation. Circulation 99:2571–2576PubMedGoogle Scholar
  12. Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1:136–138PubMedGoogle Scholar
  13. Heider H, Verca SB, Rusconi S, Asmis R (2000) Comparison of lipid-mediated and adenoviral gene transfer to human monocyte-derived macrophages and COS-7 cells. BioTechniques 28:260–270PubMedGoogle Scholar
  14. Horvai A, Palinski W, Wu H, Moulton KS, Kalla K, Glass CK (1995) Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Natl Acad Sci USA 92:5391–5395PubMedCrossRefADSGoogle Scholar
  15. Iozef R, Becker K, Boehme CC, Schirmer RH, Werner D (2000) Assembly and functional expression of murine glutathione reductase cDNA: a sequence missing in expressed sequence tag libraries. Biochim Biophys Acta 1500:137–141PubMedGoogle Scholar
  16. Ishiguro H, Yoshida H, Major AS, Zhu T, Babaev VR, Linton MF, Fazio S (2001) Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo. J Biol Chem 276:36742–36748PubMedCrossRefGoogle Scholar
  17. Kerr WG, Mule JJ (1994) Gene therapy: current status and future prospects. J Leukoc Biol 56:210–214PubMedGoogle Scholar
  18. Lang R, Rutschman RL, Greaves DR, Murray PJ (2002) Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J Immunol 168:3402–3411PubMedGoogle Scholar
  19. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208PubMedGoogle Scholar
  20. Miller AD (1992) Retroviral vectors. Curr Top Microbiol Immunol 158:1–24PubMedCrossRefGoogle Scholar
  21. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109PubMedCrossRefMathSciNetGoogle Scholar
  22. Nienhuis AW, McDonagh KT, Bodine DM (1991) Gene transfer into hematopoietic stem cells. Cancer 67:2700–2704PubMedCrossRefGoogle Scholar
  23. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  24. Savvides SN, Scheiwein M, Böhme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277:2779–2784PubMedCrossRefGoogle Scholar
  25. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924PubMedCrossRefGoogle Scholar
  26. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478PubMedCrossRefGoogle Scholar
  27. Tutic M, Lu XA, Schirmer RH, Werner D (1990) Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem 188:523–528PubMedCrossRefGoogle Scholar
  28. Vile RG, Russell SJ (1995) Retroviruses as vectors. Br Med Bull 51:12–30PubMedGoogle Scholar
  29. Wang Y, Qiao M, Mieyal JJ, Asmis LM, Asmis R (2006) Molecular mechanism of glutathione-mediated protection from oxidized LDL-induced cell injury in human macrophages: role of glutathione reductase and glutaredoxin. Free Radic Biol Med 41:775–785PubMedCrossRefGoogle Scholar
  30. Webb NR, Bostrom MA, Szilvassy SJ, van der Westhuyzen DR, Daugherty A, de Beer FC (2003) Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 23:263–268PubMedCrossRefGoogle Scholar
  31. Wilson K, Fry GL, Chappell DA, Sigmund CD, Medh JD (2001) Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein e knockout mice but not in C57BL/6 mice. Arterioscler Thromb Vasc Biol 21:1809–1815PubMedGoogle Scholar
  32. Yoshida H, Hasty AH, Major AS, Ishiguro H, Su YR, Gleaves LA, Babaev VR, Linton MF, Fazio S (2001) Isoform-specific effects of apolipoprotein E on atherogenesis: gene transduction studies in mice. Circulation 104:2820–2825PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Laboratory MedicineKenezy Gyula HospitalDebrecenHungary
  2. 2.Division of NephrologyUniversity of Texas Health Science Center at San Antonio and South Texas Veterans Health Care SystemSan AntonioUSA

Personalised recommendations