Skip to main content
Log in

Transfection of insect cell lines using polyethylenimine

  • Published:
Cytotechnology Aims and scope Submit manuscript


Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been frequently done using labor intensive and cytotoxic liposome-based transfection reagents. In the current study we have optimized a new kind of polyethylenimine-based DNA transfection reagent on the Spodoptera frugiperda Sf9 insect cell line. A plasmid vector that transiently expresses green fluorescent protein (GFP) was effectively delivered into Sf9 cells. A transfection efficiency of 54% and cell viability of 85–90% were obtained for Sf9 cells. The developed transfection protocol has now been successfully used to transfect eight insect cell lines derived from Bombyx mori, Trichoplusia ni, Helicoverpa zea, Heliothis virescens and S. frugiperda with GFP and GUS with transfection efficiencies of at least 45%. This method provides high heterologous protein expression levels, transfection efficacy and cell viability, and could be used for transient gene expression in other lepidopteran cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. GS Laboratory Equipment, 275 Aiken Rd., Asheville, NC 28804, USA.

  2. Faster, 46 Via Vespucci, Ferrara 44100, Italy.

  3. Grant Instruments (Cambridge) Limited, 29 Station Rd., Shepreth, Royston, Herts SG8 6PZ, England.

  4. Leica Microsystems Wetzlar GmbH, 17–37 Ernst-Leitz Str., Wetzlar 35578, Germany.

  5. Rainin Instrument Co., Inc., P.O. Box 4026, Mack Rd., Woburn, MA 01888–4026, USA.

  6. Drummond Scientific Co., 500 Parkway, P.O. Box 700, Broomall, PA 19008, USA.

  7. Stuart Scientific Co., Staffordshire, UK.

  8. Eppendorf AG, 1 Barkhausenweg, Hamburg 22339, Germany.

  9. Hausser Scientific Co., 935 Horsham Rd., Suite C, Horsham, PA 19044–1286, USA.

  10. Leica Microsystems Imaging Solution Ltd. PO Box 86, 515 Coldhams Lane, Cambridge CB1 3XJ, UK.

  11. Amersham Biosciences Corp., P.O. Box 1327, 800 Centennial Ave., Piscataway, NJ 08855–1327, USA.

  12. Adobe Systems Incorporated, San Jose, CA 95110, USA.

  13. Microsoft Corp., One Microsoft way, Redmond, WA 9052–6399, USA.

  14. Life Technologies, 3175 Staley Rd., Grand Island, NY 14072, USA.

  15. Sigma, P.O. Box 14508, St. Louis, MO63178, USA.

  16. Fermentas Inc., 7520 Conneley Drive, Suite A, Hanover, MD 21076, USA.

  17. Greiner, GmBH D-72636 Frickenhausen, West Germany.

  18. Kimble/Kontes, Vineland, NJ, USA.

  19. Falcon brand, Beckon Dickenson and Co, Lincoln Park, NJ 07035, USA.

  20. Costar, 205 Broadway, Cambridge, MA 02139, USA.

  21. ISC BioExpress, 420 North Kays Dr., Kaysville, UT 84037, USA.

  22. Fisher Scientific, 3970 Johns Creek Court Suite 500, Suwanee, GA 30024, USA.

  23. Pall Gelman Laboratory, 600 South Wagner Rd., Ann Arbor, MI 48103–9019 USA.


  • Alam J, Cook JL (1990) Reporter genes: application to the study of mammalian gene transcription. Anal Biochem 188:245–254

    Article  CAS  Google Scholar 

  • Andreason GL, Evans GA (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation. BioTechniques 6:650–659

    CAS  Google Scholar 

  • Bangham AD (1992) Liposomes: realizing their promise. Hosp Pract 27:51–62

    CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–72301

    Article  CAS  Google Scholar 

  • Chang M-J, Kuzio J, Blissard GW (1999) Modulation of translational efficiency by contextual nucleotides flanking a baculovirus initiator AUG codon. Virology 259(2):369–683

    Article  CAS  Google Scholar 

  • Demeneix B, Behr J, Boussif O, Zanta MA, Abdallah B, Remy J (1998) Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev 30(1–3):85–95

    Google Scholar 

  • de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Nothrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  CAS  Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160

    Article  CAS  Google Scholar 

  • Godman CL, Mcintosh AH, El Sayed GN, Grasela JJ, Stiles B (2001) Production of selected baculoviruses in newly established lepidopteran cell lines. In Vitro Cell Dev Biol 37:374–379

    Article  Google Scholar 

  • Goodwin RH, Tompkins GJ, McCawley P (1978) Gypsy moth cell line divergent in viral susceptibility I. Culture and Identification. In Vitro 14:485–494

    CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051

    CAS  Google Scholar 

  • Graham FL, Van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  CAS  Google Scholar 

  • Gundersen-Rindal D, Slack JM, Lynn DE (2001) Transfection of Lymantria dispar insect cell lines. Meth Cell Sci 22:257–263

    Article  Google Scholar 

  • Han YT, Lew W, Butler H (2002) Fluorescent applications using the typhoon variable mode imager. Life Science News, 12 Amersham Biosciences

  • Harrison RL, Bonning BC (1999) The nucleopolyhedroviruses of Rachoplusia ou and Anagrapha falcifera are isolates of the same virus. J Gen Virol 80:2793–2798

    CAS  Google Scholar 

  • Je YH, Chang JH, Kim MH, Roh JY, Jin BR, O’Reilly DR (2001) The use of defective Bombyx mori nucleopolyhedrovirus genomes maintained in Escherichia coli for the rapid generation of occlusion-positive and occlusion-negative expression vectors. Biotech Letter 23:1809–1817

    Article  CAS  Google Scholar 

  • Keith MBA, Farrel PJ, Iatrou K, Behie LA (2000) Use of flow cytometry to rapidly optimize the transfection of animal cells. BioTechniques 28:148–154

    CAS  Google Scholar 

  • Leopold RA, Hughes K-J, Devault D (1996) Using electroporation and a slot cuvette to deliver plasmid DNA to insect embryos. Gen Anal/Biomol Eng 12:197–200

    Article  CAS  Google Scholar 

  • Lynn DE (2002) Methods for maintaining insect cell cultures. J Insect Sci 2:9:7

    Google Scholar 

  • Lynn DE, Dougherty EM, McClintock JT, Loeb M (1988) Development of cell lines from various tissues of Lepidoptera. In: Kuroda Y, Kurstak E, Maramorosch K (eds) Invertebrate and fish tissue culture. Japan Scientific Societies Press, Tokyo, pp 239–242

    Google Scholar 

  • Maeda S (1989) Gene transfer vectors of a baculovirus, Bombyx mori nuclear polyhedrosis virus, and their use for expression of foreign genes in insect cells. In: Mitshuhashi J (ed) Invertebrate cell systems applications, vol. 1, CRC Press Boca Raton, FL, p 167

  • Mann SG, King LA (1989) Efficient transfection of insect cells with Baculovirus DNA using electroporation. J Gen Virology 70:3501–3505

    Article  CAS  Google Scholar 

  • Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93(22):12349–12354

    Article  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  Google Scholar 

  • Rahman M, Gopinathan KP (2004) Systemic and in vitro infection process of Bombyx mori nuclopolyhedrovirus. J Virus Res 101:109–118

    Article  CAS  Google Scholar 

  • Shigikawa K, Dower WJ (1988) Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into the cells. BioTechniques 8:742–751

    Google Scholar 

  • Singer M, Berg P (1998) Genes and genomes. M, Mir, p 373

  • Slack JM, Dougherty EM, Lawrence SD (2001) A study of Autographa californica multiple nucleopolyhedrosis ODV envelope protein p74 using GFP tag. J Gen Virol 82:2279–2287

    CAS  Google Scholar 

  • Slack JM, Lawrence SD (2003) Purification of DNA for the transfection of Spodoptera frugiperda. Meth Cell Sci 24:155–163

    Article  Google Scholar 

  • Stewart NT, Byrne KM, Hosick HL, Vierck JL Dodson MV (2000) Traditional and emerging methods for analyzing cell activity in cell culture. Meth Cell Sci 22:67–78

    Article  CAS  Google Scholar 

  • Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas, Agric Exp Sta Bull No. 1555

  • Trotter KM, Wood HA (1995) Transfection techniques for producing recombinant baculoviruses. Methods Mol Biol 39:97–105

    CAS  Google Scholar 

  • Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 13:213–217

    CAS  Google Scholar 

  • Walker VK (1989) Gene transfer in insects. In: Maramorosch K, Sato G (eds) Advances in Cell Culture, vol 7, Academic Press, New York, pp 87–124

  • Zhu N, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action. Biochem Biophys Acta 1189:195–203

    Google Scholar 

  • Zou SM, Erbacher P, Remy JS, Behr JP (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2(2):128–134

    Article  CAS  Google Scholar 

Download references


Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. A Science & Technology Centre of Ukraine grant (STCU project 119) supported this project and was part of collaboration between the Uzbekistan Academy of Sciences of Uzbekistan, UC Davis and the USDA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. E. Lynn.

Additional information

As a U.S. Government employee, the article is not copyrightable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogay, I.D., Lihoradova, O.A., Azimova, S.S. et al. Transfection of insect cell lines using polyethylenimine. Cytotechnology 51, 89–98 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: