, 50:77 | Cite as

Regulating apoptosis in mammalian cell cultures

Original Paper


Cell culture technology has become a widely accepted method used to derive therapeutic and diagnostic protein products. Mammalian cells adapted to grow in bioreactors now play an integral role in the development of these biologicals. A major limiting factor determining the output efficiency of mammalian cell cultures however, is apoptosis or programmed cell death. Methods to delay apoptosis and increase the longevity of cell cultures can lead to more economical processes. Researchers have shown that both genetic and chemical strategies to block apoptotic signals can increase cell culture productivity. Here, we discuss various strategies which have been implemented to improve cellular viabilities and productivities in batch cultures.


Mammalian cell culture Apoptosis Bcl-2 protein Cell cycle arrest Recombinant protein production 


  1. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495CrossRefGoogle Scholar
  2. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326CrossRefGoogle Scholar
  3. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66CrossRefGoogle Scholar
  4. Al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156CrossRefGoogle Scholar
  5. Al-Rubeai M, Mills D, Emery AN (1990) Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnology 4:13–28CrossRefGoogle Scholar
  6. Arden N, Betenbaugh MJ (2004). Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22:174–180CrossRefGoogle Scholar
  7. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430CrossRefGoogle Scholar
  8. Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D, Simonetta F, Scherubl H, Truss M, Hagemeier C et al (2006) DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: The lack of this suppression in p53mut␣cells contributes to apoptosis. J Biol Chem 281:8675–8685CrossRefGoogle Scholar
  9. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731CrossRefGoogle Scholar
  10. Boya P, Roumier T, Andreau K, Gonzalez-Polo RA, Zamzami N, Castedo M, Kroemer G (2003) Mitochondrion-targeted apoptosis regulators of viral origin. Biochem Biophys Res Commun 304:575–581CrossRefGoogle Scholar
  11. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618CrossRefGoogle Scholar
  12. Charbonneau JR, Furtak T, Lefebvre J, Gauthier ER (2003) Bcl-xL expression interferes with the effects of L-glutamine supplementation on hybridoma cultures. Biotechnol Bioeng 81:279–290CrossRefGoogle Scholar
  13. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM (1996) Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379:554–556CrossRefGoogle Scholar
  14. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefGoogle Scholar
  15. Chiang GG, Sisk WP (2005a) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91:779–792CrossRefGoogle Scholar
  16. Chiang GG, Sisk WP (2005b) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng. Jun 28Google Scholar
  17. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death DifferGoogle Scholar
  18. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355CrossRefGoogle Scholar
  19. Chung JD, Sinskey AJ, Stephanopoulos G (1998) Growth factor and bcl-2 mediated survival during abortive proliferation of hybridoma cell line. Biotechnol Bioeng 57:164–171CrossRefGoogle Scholar
  20. Cohen JJ (1993) Apoptosis. Immunol Today 14:126–130CrossRefGoogle Scholar
  21. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607CrossRefGoogle Scholar
  22. Cudna RE, Dickson AJ (2003) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 81:56–65CrossRefGoogle Scholar
  23. Cummings MC, Winterford CM, Walker NI (1997) Apoptosis. Am J Surg Pathol 21:88–101CrossRefGoogle Scholar
  24. deZengotita VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77:369–380CrossRefGoogle Scholar
  25. Ferri KF, Kroemer G (2001) Organelle-specific initiation␣of cell death pathways. Nat Cell Biol 3:E255–E263CrossRefGoogle Scholar
  26. Figueroa B Jr, Sauerwald TM, Mastrangelo AJ, Hardwick JM, Betenbaugh MJ (2001) Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults. Biotechnol Bioeng 73:211–222CrossRefGoogle Scholar
  27. Figueroa B Jr, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5:230–245CrossRefGoogle Scholar
  28. Follstad BD, Wang DI, Stephanopoulos G (2002) Mitochondrial membrane potential selects hybridomas yielding high viability in fed-batch cultures. Biotechnol Prog 18:1–5CrossRefGoogle Scholar
  29. Franek F, Dolnikova J (1991) Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: effect of nutrient concentration. Cytotechnology 7:33–38CrossRefGoogle Scholar
  30. Franek F, Sramkova K (1996) Protection of B lymphocyte hybridoma against starvation-induced apoptosis: survival-signal role of some amino acids. Immunol Lett 52:139–144CrossRefGoogle Scholar
  31. Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN, Wang DI (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 62:632–640CrossRefGoogle Scholar
  32. Gueven N, Becherel OJ, Birrell G, Chen P, DelSal G, Carney JP, Grattan-Smith P, Lavin MF (2006) Defective p53 response and apoptosis associated with an ataxia-telangiectasia-like phenotype. Cancer Res 66:2907–2912CrossRefGoogle Scholar
  33. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461CrossRefGoogle Scholar
  34. Huo JX, Metz SA, Li GD (2004) p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 11:99–109CrossRefGoogle Scholar
  35. Jendrossek V, Muller I, Eibl H, Belka C (2003) Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene 22:2621–2631CrossRefGoogle Scholar
  36. Jung D, Cote S, Drouin M, Simard C, Lemieux R (2002) Inducible expression of Bcl-XL restricts apoptosis resistance to the antibody secretion phase in hybridoma cultures. Biotechnol Bioeng 79:180–187CrossRefGoogle Scholar
  37. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398Google Scholar
  38. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3:411–421CrossRefGoogle Scholar
  39. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 17:7040–7046Google Scholar
  40. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257Google Scholar
  41. Kim NS, Lee GM (2002a) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78:217–228CrossRefGoogle Scholar
  42. Kim NS, Lee GM (2002b). Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95:237–248CrossRefGoogle Scholar
  43. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, Gazdar A, Blenis J, Arnott D, Ashkenazi A (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646CrossRefGoogle Scholar
  44. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337Google Scholar
  45. Lasunskaia EB, Fridlianskaia AA, Darieva ZA, da Silva MS, Kanashiro MM, Margulis BA (2003) Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotechnol Bioeng 81:496–504CrossRefGoogle Scholar
  46. Lasunskaia EB, Fridlianskaia II, Darieva ZA, Da Silva MSR, Kanashiro MM, Margulis BA (2005) Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotechnol Bioeng 81:496–504Google Scholar
  47. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75CrossRefGoogle Scholar
  48. Lee SK, Lee GM (2003) Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnol Bioeng 82:872–876CrossRefGoogle Scholar
  49. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399CrossRefGoogle Scholar
  50. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157CrossRefGoogle Scholar
  51. Mastrangelo AJ, Betenbaugh MJ (1998) Overcoming apoptosis: new methods for improving protein-expression systems. Trends Biotechnol 16:88–95CrossRefGoogle Scholar
  52. Mastrangelo AJ, Hardwick JM, Betenbaugh MJ (1996) BCl-2 apoptosis and extends recombinant protein production cells infected with Sindbis viral vectors. Cytotechnology 22:169–178CrossRefGoogle Scholar
  53. Mastrangelo AJ, Hardwick JM, Bex F, Betenbaugh MJ (2000a) Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol Bioeng 67:544–554CrossRefGoogle Scholar
  54. Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ (2000b) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng 67:555–564CrossRefGoogle Scholar
  55. Mazur X, Fussenegger M, Renner WA, Bailey JE (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog 14:705–713CrossRefGoogle Scholar
  56. Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716CrossRefGoogle Scholar
  57. Mercille S, Massie B (1994a). Induction of apoptosis in nutrient deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44:1140–1154CrossRefGoogle Scholar
  58. Mercille S, Massie B (1994b). Induction of apoptosis in oxygen-deprived cultures of hybridoma cells. Cytotechnology 15:117–128CrossRefGoogle Scholar
  59. Mercille S, Jolicoeur P, Gervais C, Paquette D, Mosser DD, Massie B (1999) Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/0 myeloma cells transfected with the E1B-19 K adenoviral gene. Biotechnol Bioeng 63:516–528CrossRefGoogle Scholar
  60. Nicholls CD, McLure KG, Shields MA, Lee PW (2002). Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 277:12937–12945CrossRefGoogle Scholar
  61. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058CrossRefGoogle Scholar
  62. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355CrossRefGoogle Scholar
  63. Perani A (1998) VAriable functions of bcl-2 in mediating strss-induced apoptosis in hybridoma cells. Cytotechnology 28:177–188CrossRefGoogle Scholar
  64. Raff M (1998) Cell suicide for beginners. Nature 396(6707):119–122CrossRefGoogle Scholar
  65. Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, Gibson BW, Ellerby HM, Bredesen DE (2004) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 279:177–187CrossRefGoogle Scholar
  66. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388Google Scholar
  67. Sak A, Wurm R, Elo B, Grehl S, Pottgen C, Stuben G, Sinn B, Wolf G, Budach V, Stuschke M (2003) Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21(WAF1/CIP1). Cancer Gene Ther 10:926–934CrossRefGoogle Scholar
  68. Sanfeliu A, Stephanopoulos G (1999) Effect of glutamine limitation on the death of attached Chinese hamster ovary cells. Biotechnol Bioeng 64:46–53CrossRefGoogle Scholar
  69. Sauerwald TM, Betenbaugh MJ (2002) Apoptosis in biotechnology: its role in mammalian cell culture and methods of inhibition. BioProcessing 1:61–68Google Scholar
  70. Sauerwald TM, Betenbaugh MJ, Oyler GA (2002) Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 77:704–716CrossRefGoogle Scholar
  71. Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340CrossRefGoogle Scholar
  72. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139CrossRefGoogle Scholar
  73. Simpson NH, Singh RP, Emery AN, Al-Rubeai M (1999)␣Bcl-2 over-expression reduces growth rate and␣prolongs G1 phase in continuous chemostat cultures of hybridoma cells. Biotechnol Bioeng 64:174–186CrossRefGoogle Scholar
  74. Singh RP, al-Rubeai M (1998) Apoptosis and bioprocess technology. Adv Biochem Eng Biotechnol 62:167–184Google Scholar
  75. Singh RP, al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726CrossRefGoogle Scholar
  76. Singh RP, Finka G, Emery AN, al-Rubeai M (1997) Apoptosis and its control in cell cultures systems. Cytotechnology 23:87–93CrossRefGoogle Scholar
  77. Sitailo LA, Tibudan SS, Denning MF (2002) Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem 277:19346–19352CrossRefGoogle Scholar
  78. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245CrossRefGoogle Scholar
  79. Tey BT, Al-Rubeai M (2004) Suppression of apoptosis in perfusion culture of Myeloma NS0 cells enhances cell growth but reduces antibody productivity. Apoptosis 9:843–852CrossRefGoogle Scholar
  80. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000a) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol 79:147–159CrossRefGoogle Scholar
  81. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000b) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68:31–43CrossRefGoogle Scholar
  82. Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F (2003) Protective effect of viral homologues of bcl-2 on hybridoma cells under apoptosis-inducing conditions. Biotechnol Prog 19:84–89CrossRefGoogle Scholar
  83. Weinberg RL, Veprintsev DB, Fersht AR (2004) Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341:1145–1159CrossRefGoogle Scholar
  84. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic␣reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028CrossRefGoogle Scholar
  85. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291CrossRefGoogle Scholar
  86. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765CrossRefGoogle Scholar
  87. Zhang H (2006) p53 plays a central role in UVA and UVB induced cell damage and apoptosis in melanoma cells. Cancer LettGoogle Scholar
  88. Zhang X, Li J, Sejas DP, Pang Q (2005) The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J Biol Chem 280:19635–19640CrossRefGoogle Scholar
  89. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69CrossRefGoogle Scholar
  90. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481–1486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations