, 49:153 | Cite as

Mechanisms for Bt Toxin Resistance and Increased Chemical Pesticide Susceptibility in Cry1Ac10-resistant Cultured Insect Cells

  • Kaiyu Liu
  • Jin Zheng
  • Huazhu HongEmail author
  • Jianxin Peng
  • Hong Yang
  • Rong Peng


Cabbage looper moth (Trichoplusia ni) cell line BTI-Tn-5B1-4 (TnH5) has developed high-level resistance (>1000 fold) by the selection of Bt Cry1Ac10 toxin. In order to examine mechanisms of resistance to Cry1Ac10 toxin (biological pesticide), both general esterase activities and cell tolerance to osmotic lysis were compared between non-selected Cry1Ac10-susceptible Trichoplusia ni cell line TnH5-S and Cry1Ac10-resistant Trichoplusia ni cell line TnH5-R selected by Bt Cry1Ac10. The Cry1Ac10-resistant TnH5-R cells had lower general esterase activity than the non-selected TnH5-S cells, and the esterase isozyme bands for the Cry1Ac10-resistant TnH5-R cells were much weaker than that for the non-selected TnH5-S cells. Both activated Cry1Ac10 toxin and multi-toxin from Bacillus thuringiensis subsp. aizawai GC-91 (an engineering bacterium) could not inhibit the esterase activity both in the Cry1Ac10-susceptible and Cry1Ac10-resistant cells, but two chemical pesticides, chlopyrifos and methomyl, could greatly inhibit the esterase activities both in the TnH5-R and TnH5-S cells. On the other hand, cell tolerance to osmotic lysis caused by hypotonic solution for the Cry1Ac10-resistant TnH5-R cells was higher than that for the non-selected TnH5-S cells (2.5×). Based on these results, we made the following conclusions. The general esterase activities in the Cry1Ac10-resistant TnH5-R cells was not related to Bt Cry1Ac10 resistance, but the susceptibility to the two tested chemical pesticides increased in TnH5-R cells because of their lower esterase activity. The increase of cell tolerance to osmotic lysis for the Cry1Ac10-resistant TnH5-R cells may be one of the mechanisms for Bt toxin resistance because midgut cells of insects are also disrupted by an osmotic lysis caused by Bt toxin.


Bacillus thuringiensis Chemical pesticide Esterase Osmotic lysis Resistance Trichoplusia ni cell line 



Bacillus thuringiensis




enzyme-linked immunosorbent assay


tetrazolium salt


α-naphthyl acetate


β-naphthyl acetate


sodium dodecyl sulphate


Cry1Ac10-susceptible TnH5 cell


Cry1Ac10-resistant TnH5 cell


  1. Ackerman, M.J., Krapivinsky, G.B., Gordon, E.,  et al. 1994Characterization of a native swelling-induced chloride currentICl. Swell, and its regulatory protein, pICln, in Xenopus oocytesJapanese J. Physiol.441724(suppl)Google Scholar
  2. Akhurst R., James B. and Bird L. 2000. Resistance to Ingard cotton by the cotton bollwormHelicoverpa armigeraProceedings of the 10th Australian Cotton ConferenceBroad-beach. pp. 195–199.Google Scholar
  3. Asperen, K.V. 1962A study of housefly esterase by means of a sensitive colormetric methodJ. Insect. Physiol.8401406CrossRefGoogle Scholar
  4. Devonshire, A.L. 1991Role of esterases in resistance of insects to insecticidesBiochem. Soc. Trans.19755759PubMedGoogle Scholar
  5. Gould, F., Martinez-Ramirez, A., Anderson, A.,  et al. 1992Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens Proc. Natl. Acad. Sci. USA8979867990PubMedCrossRefGoogle Scholar
  6. Granadios, R.R., Li, G., Derksen, A.G.,  et al. 1991A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virusJ. Invertebr. Pathol.64260266CrossRefGoogle Scholar
  7. Gunning, R.V., Dang, H.T., Kemp, H.C.,  et al. 2005New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac10 toxinAppl. Environ. Microbiol.7125582563PubMedCrossRefGoogle Scholar
  8. Heckel, D.G. 1994The complex genetic basis of resistance to Bacillus thuringiensis toxin in insectsBiocontrol Sci. Technol.4405417CrossRefGoogle Scholar
  9. Hink, W.F., Ignoffo, C. 1970Establishment of new line (IMC-Hz-1) from ovaries of cotton ballworm mothHeliothis zea (Boddie)Exp. Cell Res.60307309PubMedCrossRefGoogle Scholar
  10. Ishaaya, I. 1993Insect detoxifying enzymes: their importance in pesticide synergism and resistanceArch. Insect Biochem. Physiol.22263276PubMedCrossRefGoogle Scholar
  11. Jurat-Fuentes, J.L., Gould, F.L., Adang, M.J. 2003Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxin in Heliothis virescens suggests multiple mechanisms of resistanceAppl. Environ. Microbiol.6958985906PubMedCrossRefGoogle Scholar
  12. Justin, C.G.L. 1989Increased insecticide susceptibility in Heliothis armigera (HBN) and Spodoptera litura F. larvae due to Bacillus thuringiensis Berline treatmentInsect Sci. Appl.10573576Google Scholar
  13. Krapivininsky, G.B., Ackerman, M.J., Gordon, E.A.,  et al. 1994Molecular characterization of a swelling induced chloride conductance regulatory protein, pIClnCell76439448CrossRefGoogle Scholar
  14. Liang, G., Tang, W., Guo, Y. 2000Studies on the resistance screening and cross-resistance of cotton bollworm to Bacillus thuringiensis (Berliner)Sci. Agric. Sin.3344653Google Scholar
  15. Liu, Y.B., Tabashnik, B.E., Masson, L.,  et al. 2000Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae)J. Econ. Entomol.9315PubMedGoogle Scholar
  16. Liu, Y.B., Tabashnik, B.E., Meyer, S.K.,  et al. 2001Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback mothAppl. Environ. Microbiol.6732163219PubMedCrossRefGoogle Scholar
  17. Liu, K., Zheng, B., Hong, H.,  et al. 2004Characterization of cultured insect cells selected by Bacillus thuringiensis In Vitro Cell Dev. Biol. Anim.40312317PubMedCrossRefGoogle Scholar
  18. Mosmann, T. 1983Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assayJ. Immunol. Methods655563PubMedCrossRefGoogle Scholar
  19. Paulmichl, M., Li, Y., Wickman, K.,  et al. 1992New mammalian chloride channel identified by expression cloningNature356238241PubMedCrossRefGoogle Scholar
  20. Summers, M.D., Smith, G.E. 1987A manual of methods for baculovirus vectors and insect cell culture proceduresTexas Agricultural Experiment Station Bulletin No1555561987Google Scholar
  21. Tabashnik, B.E., Cushing, N.L., Finson, N.,  et al. 1990Field development of resistance to Bacillus thuringiensis in diamondback moth (lepiddoptera: plutallidae)J. Econ. Entomol.8316711675Google Scholar
  22. Xie, W.D., Qu, S.R., Pang, Y.,  et al. 1988The establishment of an insect cell line from Spodoptera liturathe study of virus infectionActa Sci. Nat. Univ. Sunyatseni45113116Google Scholar
  23. Zhao, J.Z., Collin, H., Tang, J.D.,  et al. 2000Development and characterization of diamondback moth resistance to transgenic broccoi expressing high level of Cry1CAppl. Environ. Microbiol. (AEM)6637843789CrossRefGoogle Scholar
  24. Zhao, J., Li, Y., Collins, H.L.,  et al. 2001Different cross-resistance patterns in the diamondback moth (lepidoptera: plutellidae) resistance to Bacillus thuringiensis toxin Cry1CJ. Econ. Entomol.9415471552PubMedCrossRefGoogle Scholar
  25. Zhu, C.Y., Snodgrass, L.G., Chen, M.S. 2004Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris Insect Biochem. Mol. Biol.3411751186PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kaiyu Liu
    • 1
  • Jin Zheng
    • 1
  • Huazhu Hong
    • 1
    Email author
  • Jianxin Peng
    • 1
  • Hong Yang
    • 1
  • Rong Peng
    • 1
  1. 1.Institute of EntomologyCentral China Normal UniversityWuhanP. R. China

Personalised recommendations