, 50:141 | Cite as

Cell Culture Processes for the Production of Viral Vectors for Gene Therapy Purposes

  • James N. Warnock
  • Otto-Wilhelm Merten
  • Mohamed Al-RubeaiEmail author


Gene therapy is a promising technology for the treatment of several acquired and inherited diseases. However, for gene therapy to be a commercial and clinical success, scalable cell culture processes must be in place to produce the required amount of viral vectors to meet market demand. Each type of vector has its own distinct characteristics and consequently its own challenges for production. This article reviews the current technology that has been developed for the efficient, large-scale manufacture of retrovirus, lentivirus, adenovirus, adeno-associated virus and herpes simplex virus vectors.

Key words

Adeno-associated virus Adenovirus Bioreactor Culture conditions Herpes simplex virus vectors Lentivirus Microcarrier Optimization Process development Retrovirus 


  1. Al-Rubeai M., Emery A.N., Chalder S. and Jan D.C. (1992). Specific monoclonal antibody productivity and the cell cycle-comparisons of batchcontinuous and perfusion cultures. Cytotechnology 9: 85–97 CrossRefGoogle Scholar
  2. Al-Rubeai M., Rookes S. and Emery A. N. (1990). Studies of cell proliferation and monoclonal antibody synthesis and secretion in alginate-entrapped hybridoma cells. In: de Bont, J.A.M., Visser, J., Mattiasson, B., and Tramper, J. (eds) Physiology of Immobilized cells. 10-12-1989, pp 181–188. Elsevier Science Publishers Cells, AmsterdamThe Netherlands Google Scholar
  3. Beer C., Buhr P., Hahn H., Laubner D. and Wirth M. (2003a). Gene expression analysis of murine cells producing amphotropic mouse leukaemia virus at a cultivation temperature of 32 and 37 °C. J. Gen. Virol. 84: 1677–1686 CrossRefGoogle Scholar
  4. Beer C., Meyer A., Muller K. and Wirth M. (2003b). The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 308: 137–146 CrossRefGoogle Scholar
  5. Benihoud K., Yeh P. and Perricaudet M. (1999). Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10: 440–447 CrossRefGoogle Scholar
  6. Blouin V., Brument N., Toublanc E., Raimbaud I., Moullier P. and Salvetti A. ((2004)). Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med. 6(1): s223–s228 CrossRefGoogle Scholar
  7. Braas G., Searle P.F., Slater N.K.H. and Lydiatt A. (1996). Stratagies for the isolation and purification of retroviral vectors for human gene therapy. Bioseparation 6: 211–228 Google Scholar
  8. Breyer B., Jiang W., Cheng H., Zhou L., Paul R., Feng T. and He T.C. (2001). Adenoviral vector-mediated gene transfer for human gene therapy. Curr. Gene Ther. 1: 149–162 CrossRefGoogle Scholar
  9. Brooks A.I., Stein C.S., Hughes S.M., Heth J., Mccray P.M., Sauter S.L., Johnston J.C., Cory-Slechta D.A., Federoff H.J. and Davidson B.L. (2002). Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA 99: 6216–6221 CrossRefGoogle Scholar
  10. Carroll R., Lin J.T., Dacquel E.J., Mosca J.D., Burke D.S. and St Louis D.C. (1994). A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 68: 6047–6051 Google Scholar
  11. Chuah M.K., Collen D. and Vanden Driessche T. (2003). Biosafety of adenoviral vectors. Curr. Gene Ther. 3: 527–543 CrossRefGoogle Scholar
  12. Clark K.R. (2002). Recent Advances in Recombinant Adeno-Associated Virus Vector Production. Kidney Int. 61: 9–15 CrossRefGoogle Scholar
  13. Coleman J.E., Huentelman M.J., Kasparov S., Metcalfe B.L., Paton J.F., Katovich M.J., Semple-Rowland S.L. and Raizada M.K. (2003). Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol. Genom. 12: 221–228 Google Scholar
  14. Collaco R.F., Cao X. and Trempe J.P. (1999). A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238: 397–405 CrossRefGoogle Scholar
  15. Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase Cassette Exchange in retroviral Vector Producer Cell Lines: predictability and efficiency in transgene replacement. J. Biotechnol.Submitted.Google Scholar
  16. Cortin V., Thibault J., Jacob D. and Garnier A. (2004). High-titer adenovirus vector production in 293S cell perfusion culture. Biotechnol. Prog. 20: 858–863 CrossRefGoogle Scholar
  17. Côté J., Garnier A., Massie B. and Kamen A. (1998). Serum-free Production of Recombinant Proteins and Adenoviral Vectors by 293SF-3F6 Cells. Biotechnol. Bioeng. 59: 567–575 CrossRefGoogle Scholar
  18. Cruz P.E., Almeida J.S., Murphy P.N., Moreira J.L. and Carrondo M.J. (2000). Modeling retrovirus production for gene therapy. 1. Determination of optimal bioreaction mode and harvest strategy. Biotechnol. Prog. 16: 213–221 CrossRefGoogle Scholar
  19. Cruz P.E., Carmo M., Coroadinha A.S., Bengala A., Goncalves D., Teixeira M., Merten O.-W., Gény-Fiamma C. and Carrondo M.J.T. (2005). Retroviral vector stability: inactivation kinetics and membrane properties. In: Godia, F. and Fussenegger, M. (eds) Animal Cell Technology meets Genomics, pp 303–308. Springer, Dordrecht/NL CrossRefGoogle Scholar
  20. Curran M.A., Kaiser S.M., Achacoso P.L. and Nolan G.P. (2000). Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 1: 31–38 CrossRefGoogle Scholar
  21. Davis J.L., Witt R.M., Gross P.R., Hokanson C.A., Jungles S., Cohen L.K., Danos O. and Spratt S.K. (1997). Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum. Gene Ther. 8: 1459–1467 CrossRefGoogle Scholar
  22. Fallaux F.J., Kranenburg O., Cramer S.J., Houweling A., Van Ormondt H., Hoeben R.C. and Van Der Eb A.J. (1996). Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum. Gene Ther. 7(2): 215–222 CrossRefGoogle Scholar
  23. Fallaux F.J., Bout A., Van Der Velde I., Van Den Wollenberg D.J., Hehir K.M., Keegan J., Auger C., Cramer S.J., Van Ormondt H., Van Der Eb A.J., Valerio D. and Hoeben R.C. (1998). New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 9(13): 1909–1917 CrossRefGoogle Scholar
  24. Farson D., Harding T.C., Tao L., Liu J., Powell S., Vimal V., Yendluri S., Koprivnikar K., Ho K., Twitty C., Husak P., Lin A., Snyder R.O. and Donahue B.A. (2004). Development and characterization of a cell line for large-scaleserum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 6(12): 1369–1381 CrossRefGoogle Scholar
  25. Fassnacht D., Rössing S., Singh R.P., Al Rubeai M. and Pörtner R. (1999). Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 30: 95–105 CrossRefGoogle Scholar
  26. Forestell S.P., Bohnlein E. and Rigg R.J. (1995). Retroviral end-point titer is not predictive of gene transfer efficiency: implications for vector production. Gene Ther. 2: 723–730 Google Scholar
  27. Forestell S.P., Dando J.S., Chen J., de Vries P., Bohnlein E. and Rigg R.J. (1997). Novel retroviral packaging cell lines: complementary tropisms and improved vector production for efficient gene transfer. Gene Ther. 4: 600–610 CrossRefGoogle Scholar
  28. Friedmann T. 1997. Overcoming the obstacles to gene therapy. Scientific American, 80–85.Google Scholar
  29. Gao G.P., Yang Y. and Wilson J.M. (1996). Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J. Virol. 70: 8934–8943 Google Scholar
  30. Gao G.P., Lu F., Sanmiguel J.C., Tran P.T., Abbas Z., Lynd K.S., Marsh J., Spinner N.B. and Wilson J.M. (2002). Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol. Ther. 5: 644–649 CrossRefGoogle Scholar
  31. Gao X. and Huang L. (1995). Cationic liposome-mediated gene transfer. Gene Ther. 2: 710–722 Google Scholar
  32. Garnier A., Cortin V., Thibault J. and Jacob D. (2002). Production of Recombinant Adenovirus by 293 Cells Cultures in Perfusion. Cell Culture Engineering VIII, Snowmass Google Scholar
  33. Garnier A., Cote J., Nadeau I., Kamen A. and Massie B. (1994). Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology 15: 145–155 CrossRefGoogle Scholar
  34. Gény-Fiamma C., Millot L., Rocca C., Danos O. and Merten O.W. (2004). Optimization of the production of retroviraol vectors: influences of the sugar source. In: Yagasaki, K., Miura, Y., Hatori, M., and Nomura, Y. (eds) Animal Cell Technology: Basic & Applied Aspects, pp 89–97. Kluwer Academic Publishers, Netherlands Google Scholar
  35. Geraerts M., Michiels M., Baekelandt V., Debyser Z. and Gijsbers R. 2005. Upscaling of lentiviral vector production by tangential flow filtration. J. Gene Med. Published online May 20, 2005. Google Scholar
  36. Gerin P.A., Gilligan M.G., Searle P.F. and Al-Rubeai M. (1999a). Improved titers of retroviral vectors from the human FLYRD18 packaging cell line in serum- and protein-free medium. Hum. Gene Ther. 10: 1965–1974 CrossRefGoogle Scholar
  37. Gerin P.A., Searle P.F. and Al-Rubeai M. (1999b). Production of retroviral vectors for gene therapy with the human packaging cell line FLYRD18. Biotechnol. Prog. 15: 941–948 CrossRefGoogle Scholar
  38. Ghivizzani S.C., Lechman E.R., Tio C., Mule K.M., Chada S., McCormack J.E., Evans C.H. and Robbins P.D. (1997). Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy. Gene Ther. 4: 977–982 CrossRefGoogle Scholar
  39. Graham F.L., Smiley J., Russell W.C. and Nairn R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–74 CrossRefGoogle Scholar
  40. Griffiths J.B. (1988). Overview of cell culture systems and their Scale-up. In: Spier, R.E. and Griffiths, J.B. (eds) Animal Cell Biotechnology, vol. 3, pp 179–220. Academic Press Limited, London Google Scholar
  41. Grimm D., Kern A., Rittner K. and Kleinschmidt J.A. (1998). Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9: 2745–2760 CrossRefGoogle Scholar
  42. Grimm D. (1999). Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther. 6: 1322–1330 CrossRefGoogle Scholar
  43. Haselhorst D., Kaye J.F. and Lever A.M. (1998). Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer. J. Gen. Virol. 79(Pt 2): 231–237 Google Scholar
  44. He T.C., Zhou S., da Costa L.T., Yu J., Kinzler K.W. and Vogelstein B. (1998). A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95: 2509–2514 CrossRefGoogle Scholar
  45. Kost T.A., Klein J.L. and Condreay J.P. 2000. Application of recombinant baculoviruses in biopharmaceutical research. In: Al-Rubeai M. (ed.), Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp.1–28.Google Scholar
  46. Ikeda Y., Takeuchi Y., Martin F., Cosset F.L., Mitrophanous K. and Collins M. (2003). Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21: 569–572 CrossRefGoogle Scholar
  47. Imler J.L., Chartier C., Dreyer D., Dieterle A., Sainte-Marie M., Faure T., Pavirani A. and Mehtali M. (1996). Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors. Gene Ther. 3: 75–84 Google Scholar
  48. Imren S., Payen E., Westerman K.A., Pawliuk R., Fabry M.E., Eaves C.J., Cavilla B., Wadsworth L.D., Beuzard Y., Bouhassira E.E., Russell R., London I.M., Nagel R.L., Leboulch P. and Humphries R.K. (2002). Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl. Acad Sci USA 99: 14380–14385 CrossRefGoogle Scholar
  49. Iyer P., Ostrove J.M. and Vacante D. (1999). Comparison of manufacturing techniques for adenovirus production. Cytotechnology 30: 169–172 CrossRefGoogle Scholar
  50. Jardon M. and Garnier A. (2003). pH, pCO2temperature effect on r-adenovirus production. Biotechnol. Prog. 19: 202–208 CrossRefGoogle Scholar
  51. Jenny C., Toublanc E., Danos O. and Merten O.-W. 2005. Evaluation of a serum-free medium for the production of rAAV-2 using HeLa derived producer cells. Cytotechnology.In press.Google Scholar
  52. Johnson P.A., Yoshida K., Gage F.H. and Friedmann T. (1992). Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res Mol. Brain Res. 12: 95–102 CrossRefGoogle Scholar
  53. Johnston J.C., Gasmi M., Lim L.E., Elder J.H., Yee J.K., Jolly D.J., Campbell K.P., Davidson B.L. and Sauter S.L. (1999). Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73: 4991–5000 Google Scholar
  54. Kafri T., van Praag H., Ouyang L., Gage F.H. and Verma I.M. (1999). A packaging cell line for lentivirus vectors. J. Virol. 73: 576–584 Google Scholar
  55. Kamen A. and Henry O. (2004). Development and optimization of an adenovirus production process. J. Gene Med. 6: S184–S192 CrossRefGoogle Scholar
  56. Kang S.-H., Lee G.M. and Kim B.-G. (2000). Justification of continuous packed-bed reactor for retroviral vector production from amphotopic ψ CRIP murine producer cell. Cytotechnology 34: 151–158 CrossRefGoogle Scholar
  57. Kaptein L.C., Greijer A.E., Valerio D. and van Beusechem V.W. (1997). Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene Ther. 4: 172–176 CrossRefGoogle Scholar
  58. Karavodin L.M., Robbins J., Chong K., Hsu D., Ibanez C., Mento S., Jolly D. and Fong T.C. (1998). Generation of a systemic antitumor response with regional intratumoral injections of interferon gamma retroviral vector. Hum. Gene Ther. 9: 2231–2241 CrossRefGoogle Scholar
  59. Kioukia N., Nienow A.W., Al-Rubeai M. and Emery A.N. (1996). Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and comparison with hybridoma culture. Biotechnol. Prog. 12: 779–785 CrossRefGoogle Scholar
  60. Kim S.H., Kim S. and Robbins P.D. (2000). Retroviral vectors. Adv. Virus Res. 55: 545–563 CrossRefGoogle Scholar
  61. Kotani H., Zhang S., Chiang Y.L., Otto E., Weaver L., Blaese R.M., Anderson W.F., McGarrity G.J. and Newton P.B. (1994). Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5: 19–28 CrossRefGoogle Scholar
  62. Krisky D.M., Wolfe D., Goins W.F., Marconi P.C., Ramakrishnan R., Mata M., Rouse R.J., Fink D.J. and Glorioso J.C. (1998). Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5: 1593–1603 CrossRefGoogle Scholar
  63. Lai C.M., Lai Y.K.Y. and Rakoczy P.E. (2002). Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 21: 895–913 CrossRefGoogle Scholar
  64. Le Doux J.M., Davis H.E., Morgan J.R. and Yarmush M.L. (1999). Kinetics of retrovirus production and decay. Biotechnol. Bioeng. 63: 654–662 CrossRefGoogle Scholar
  65. Lee S.G., Kim S., Robbins P.D. and Kim B.G. (1996). Optimization of environmental factors for the production and handling of recombinant retrovirus. Appl. Microbiol. Biotechnol. 45: 477–483 CrossRefGoogle Scholar
  66. Lee Y.Y., Yap M.G., Hu W.S. and Wong K.T. (2003). Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol. Prog. 19: 501–509 CrossRefGoogle Scholar
  67. Lever A.M.L., Strappe P.M. and Zhao J. (2004). Lentiviral Vectors. J. Biomed. Sci. 11: 439–449 CrossRefGoogle Scholar
  68. Lochmuller H., Jani A., Huard J., Prescott S., Simoneau M., Massie B., Karpati G. and Acsadi G. (1994). Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene Ther. 5: 1485–1491 CrossRefGoogle Scholar
  69. Loewen N., Leske D.A., Chen Y., Teo W.L., Saenz D.T., Peretz M., Holmes J.M. and Poeschla E.M. (2003). Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. J. Gene Med. 5: 1009–1017 CrossRefGoogle Scholar
  70. Looby D. and Griffiths B. (1990). Immobilisation of animal cells in porous carrier culture. Trends Biotechnol. 8: 204–209 CrossRefGoogle Scholar
  71. Lyddiat A. and O’Sullivan D.A. (1998). Biochemical recovery and purification of gene therapy vectors. Curr. Opin. Biotechnol. 9: 177–185 CrossRefGoogle Scholar
  72. Mannix C. and Jarman R.F. 2000. A guide to successful scale-up of the baculovirus expression system. In: Al-Rubeai M.(eds) Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp. 43–55.Google Scholar
  73. Matsushita T., Elliger S., Elliger C., Podsakoff G., Villarreal L., Kurtzman G.J., Iwaki Y. and Colosi P. (1998). Adeno- associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5: 938–945 CrossRefGoogle Scholar
  74. McTaggart S. 2000. Retroviral Vector Production for Gene Therapy Applications. Ph. D. Thesis, University of Birmingham. Google Scholar
  75. McTaggart S. and Al-Rubeai M. (2000). Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 16: 859–865 CrossRefGoogle Scholar
  76. McTaggart S. and Al-Rubeai M. (2001). Relationship between cell proliferation, cell-cycle phaseand retroviral vector production in FLYRD18 human packaging cells. Biotechnol. Bioeng. 76: 52–60 CrossRefGoogle Scholar
  77. McTaggart S. and Al-Rubeai M. (2002). Retroviral vectors for human gene delivery. Biotechnol. Adv. 20: 1–31 CrossRefGoogle Scholar
  78. Meghrous J., Aucoin M.G., Jacob D., Chahal P.S., Arcand N. and Kamen A.A. (2005). Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol. Prog. 21: 154–160 CrossRefGoogle Scholar
  79. Mellerick D.M. and Fraser N. (1987). Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158: 265–275 CrossRefGoogle Scholar
  80. Merten O.-W. (2004). State-of-the-art of the production of retroviral vectors. J. Gene Med. 6: S105–S124 CrossRefGoogle Scholar
  81. Merten O.-W., Cornet V., Petres S., Couvé E. and Heard J.M. (1996). Large scale production of retrovirus vectors (abstract). Cytotechnology 21: 8 Google Scholar
  82. Merten O.-W., Cruz P.E., Rochette C., Gény-Fiamma C., Bouquet C., Goncalves D., Danos O. and Carrondo M.J.T. (2001a). Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol. Prog. 17: 326–335 CrossRefGoogle Scholar
  83. Merten O.-W., Gény-Fiamma C. and Douar A.M. (2005). Current issues in adeno-associated viral vectors production. Gene Ther. 12: S51–S61 CrossRefGoogle Scholar
  84. Merten O.-W., Landric L. and Danos O. (2001b). Influence of the metabolic status of packaging cells on retroviral vector production. In: Merten, O.-W., Mattanovich, D., Lang, C., Larsson, G., Neubauer, P., Porro, D., Postma, P., Teixeira de Mattos, J., and Cole, J.A. (eds) Recombinant Protein Production with Prokaryotic and Eukayotic Cells A Comparative View on Host Physiology, pp 303–318. Kluwer Academic Publishers, Netherlands Google Scholar
  85. Michael S.I. and Curiel D.T. (1994). Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther. 1: 223–232 Google Scholar
  86. Mitrophanous K., Yoon S., Rohll J., Patil D., Wilkes F., Kim V., Kingsman S., Kingsman A. and Mazarakis N. (1999). Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6: 1808–1818 CrossRefGoogle Scholar
  87. Nadeau I., Garnier A., Cote J., Massie B., Chavarie C. and Kamen A. (1996). Improvement of recombinant protein production with the human adenovirus/293S expression system using fed-batch strategies. Biotechnol. Bioeng. 51: 613–623 CrossRefGoogle Scholar
  88. Nadeau I., Gilbert P.A., Jacob D., Perrier M. and Kamen A. (2002a). Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol. Bioeng. 77: 91–104 CrossRefGoogle Scholar
  89. Nadeau I., Jacob D., Perrier M. and Kamen A. (2000). 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol. Prog. 16: 872–884 CrossRefGoogle Scholar
  90. Nadeau I. and Kamen A. (2003). Production of adenovirus vector for gene therapy. Biotechnol. Adv. 20: 475–489 CrossRefGoogle Scholar
  91. Nadeau I., Seanez G. and Wu F. 2001. Adenovirus production in 293 cells: a comparative study between a suspension cell and an adherent cell process. The 17th ESACT Meeting, Tylosand, Sweden, June 10–14.Google Scholar
  92. Nadeau I., Seanez G. and Wu F. 2002b. Optimization of a 293 suspension process for adenovirus production. Cell Culture Engineering VIII, Snowmass, Colorado, April 1–6.Google Scholar
  93. Navarro J., Oudrhiri N., Fabrega S. and Lehn P. (1998). Gene delivery systems: bridging the gap between recombinant viruses and artificial vectors. Adv. Drug Deliv. Rev. 30: 5–11 CrossRefGoogle Scholar
  94. Nemunaitis J., Fong T., Burrows F., Bruce J., Peters G., Ognoskie N., Meyer W., Wynne D., Kerr R., Pippen J., Oldham F. and Ando D. (1999). Phase I trial of interferon gamma retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Hum. Gene Ther. 10: 1289–1298 CrossRefGoogle Scholar
  95. Ni Y., Sun S., Oparaocha I., Humeau L., Davis B., Cohen R., Binder G., Chang Y.N., Slepushkin V. and Dropulic B. (2005). Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J. Gene Med. 7(6): 818–834 CrossRefGoogle Scholar
  96. Olsen J.C. (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5: 1481–1487 CrossRefGoogle Scholar
  97. Olsen J.C. and Sechelski J. (1995). Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 6: 1195–1202 CrossRefGoogle Scholar
  98. Ozuer A., Wechuck J.B., Goins W.F., Wolfe D., Glorioso J.C. and Ataai M.M. (2002). Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors. Biotechnol. Bioeng. 77: 685–692 CrossRefGoogle Scholar
  99. Pages J.C., Loux N., Farge D., Briand P. and Weber A. (1995). Activation of Moloney murine leukemia virus LTR enhances the titer of recombinant retrovirus in psi CRIP packaging cells. Gene Ther. 2: 547–551 Google Scholar
  100. Palu G., Bonaguro R. and Marcello A. (1999). In pursuit of new developments for gene therapy of human diseases. J. Biotechnol. 68: 1–13 CrossRefGoogle Scholar
  101. Pan D. and Whitley C.B. (1999). Closed hollow-fiber bioreactor: a new approach to retroviral vector production. J. Gene Med. 1: 433–440 CrossRefGoogle Scholar
  102. Parasrampuria D.A. and Hunt C.A. 1998. Therapeutic delivery issues in gene therapy, Part 1: Vectors. BioPharm, 38–45.Google Scholar
  103. Parks R.J., Chen L., Anton M., Sankar U., Rudnicki M.A. and Graham F.L. (1996). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93: 13565–13570 CrossRefGoogle Scholar
  104. Pear W.S., Nolan G.P., Scott M.L. and Baltimore D. (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90: 8392–8396 CrossRefGoogle Scholar
  105. Pensiero M.N., Wysocki C.A., Nader K. and Kikuchi G.H. (1996). Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum. Gene Ther. 7: 1095–1101 CrossRefGoogle Scholar
  106. Peshwa M.V., Kyung Y.-S., McClure D.B. and Hu W.-S. (1993). Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotechnol. Bioeng. 41: 179–187 CrossRefGoogle Scholar
  107. Pizzato M., Merten O.W., Blair E.D. and Takeuchi Y. (2001). Development of a suspension packaging cell line for production of high titreserum-resistant murine leukemia virus vectors. Gene Ther. 8: 737–745 CrossRefGoogle Scholar
  108. Rigg R.J., Chen J., Dando J.S., Forestell S.P., Plavec I. and Bohnlein E. (1996). A novel human amphotropic packaging cell line: high titercomplement resistanceand improved safety. Virology 218: 290–295 CrossRefGoogle Scholar
  109. Robbins P.D., Hideaki T. and Ghivizzani S.C. (1998). Viral vectors for gene therapy. Trends Biotechnol. 16: 35–40 CrossRefGoogle Scholar
  110. Sadaie M.R., Zamani M., Whang S., Sistron N. and Arya S.K. (1998). Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: dual gene expression in the context of HIV-2 LTR and Tat. J. Med. Virol 54: 118–128 CrossRefGoogle Scholar
  111. Sallberg M., Hughes J., Javadian A., Ronlov G., Hultgren C., Townsend K., Anderson C.G., O’Dea J., Alfonso J., Eason R., Murthy K.K., Jolly D.J., Chang S.M., Mento S.J., Milich D. and Lee W.T. (1998). Genetic immunization of chimpanzees chronically infected with the hepatitis B virus using a recombinant retroviral vector encoding the hepatitis B virus core antigen. Hum. Gene Ther. 9: 1719–1729 CrossRefGoogle Scholar
  112. Salvetti A., Oreve S., Chadeuf G., Favre D., Cherel Y., Champion-Arnaud P., David-Ameline J. and Moullier P. (1998). Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 9: 695–706 CrossRefGoogle Scholar
  113. Schiedner G., Hertel S. and Kochanek S. (2000). Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum. Gene Ther. 11: 2105–2116 CrossRefGoogle Scholar
  114. Schnell T., Foley P., Wirth M., Munch J. and Uberla K. (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum. Gene Ther. 11: 439–447 CrossRefGoogle Scholar
  115. Schonely K., Afable C., Slepushkin V., Lu X., Andre K., Boehmer J., Bengtson K., Doud M., Cohen R., Berlinger D., Slepushkina T., Chen Z., Li Y., Binder D., Davis B., Humeau L. and Dropulic B. (2003). QC release testing of an HIV-1 based lentiviral vector lot and transduced cellular product. Bioproc. J. 2: 29–47 Google Scholar
  116. Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera. Submitted.Google Scholar
  117. Sena-Esteves M., Tebbets J.C., Steffens S., Crombleholme T. and Flake A.W. (2004). Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122: 131–139 CrossRefGoogle Scholar
  118. Shen B.Q., Clarke M.F. and Palsson D.O. (1996). Kinetics of retroviral production from the amphotrophic ψCRIP murine producer cell line. Cytotechnology 22: 185–195 CrossRefGoogle Scholar
  119. Shenk T. (1996). Adenoviridae: the viruses and their replication. In: Fields, B.N., Knipe, D.M., Howley, P.M., Chanock, R.M., Melnick, J.L., Monath, T.P., Roizman, B. and Straus, S.E. (eds) Fields Virology, pp 2111–2148. Philadelphia, Lippincott Google Scholar
  120. Sheridan P. L., Bodner M., Lynn A., Phuong T.K., DePolo N.J., O’Dea J., Nguyen K., McCormack J.E., Driver D.A., Townsend K., Ibanez C.E., Sajjadi N.C., Greengard J.S., Moore M.D., Respess J., Chang S.M., Jolly D.J., Sauter S.L., la Vega D.J. and Dubensky T.W. (2000). Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol. Ther. 2: 262–275 CrossRefGoogle Scholar
  121. Starling E.H. (1896). On the absorption of fluids from the convective tissue space. J. Physiol. 19: 312–326 Google Scholar
  122. Stitz J., Muhlebach M.D., Blomer U., Scherr M., Selbert M., Wehner P., Steidl S., Schmitt I., Konig R., Schweizer M. and Cichutek K. (2001). A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology 291: 191–197 CrossRefGoogle Scholar
  123. Takahashi K., Luo T.C., Saishin Y., Saishin Y., Sung J., Hackett S., Brazzell R.K., Kaleko M. and Campochiaro P.A. (2002). Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther. 13: 1305–1316 CrossRefGoogle Scholar
  124. Theodossiou I., Thomas O.R.T. and Dunnill R. (1999). Methods for enhancing the recovery of plasmid genes from neutralised cell lysate. Bioproc. Eng. 20: 147–156 CrossRefGoogle Scholar
  125. Torrent C., Bordet T. and Darlix J.L. (1994). Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. J. Biol. Med. 240: 434–444 Google Scholar
  126. Urabe M., Ding C. and Kotin R.M. (2002). Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13: 1925–1943 CrossRefGoogle Scholar
  127. Van Den Driessche T., Vanslembrouck V., Goovaerts I., Zwinnen H., Vanderhaeghen M.L., Collen D. and Chuah M.K. (1999). Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc. Natl. Acad. Sci. USA 96: 10379–10384 CrossRefGoogle Scholar
  128. Vos J.-M. H. 1995. Viruses in Human Gene Therapy. Chapman and Hall.Google Scholar
  129. Wang G., Davidson B.L., Melchert P., Slepushkin V.A., van Es H.H., Bodner M., Jolly D.J. and McCray P.B. (1998). Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J. Virol. 72: 9818–9826 Google Scholar
  130. Warnock J.N. and Al-Rubeai M. 2004. Influence of serum concentration on cell growth and retrovirus production and decay kinetics. In: Yagasaki K., Miura Y., Hatori M. and Nomura Y. (eds), Animal Cell Technology: Basic & Applied Aspects. Kluwer Academic Publishers.Google Scholar
  131. Warnock J. N. and Al-Rubeai M. (2005). Production of Biologics from Animal Cell Cultures. In: Nedovic, V. and Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology, pp. Springer, Berlin, Heidelberg, New York Google Scholar
  132. Warnock J.N., Price T., Slade A. and Al-Rubeai M. (2004). Use of a Fluidised Bed Bioreactor for the Production of Retroviral Vectors for Gene Therapy Applications. Bioproc. J. 3: 41–45 Google Scholar
  133. Wechuck J.B., Ozuer A., Goins W.F., Wolfe D., Oligino T., Glorioso J.C. and Ataai M.M. (2002). Effect of temperature medium composition and cell passage on production of herpes-based viral vectors. Biotechnol. Bioeng. 79: 112–119 CrossRefGoogle Scholar
  134. Wikström K., Blomberg P. and Islam K.B. (2004). Clinical grade vector production: analysis of yieldstability, and storage of gmp-produced retroviral vectors for gene therapy. Biotechnol. Prog. 20: 1198–1203 CrossRefGoogle Scholar
  135. Wu N. and Ataai M.M. (2000). Production of viral vectors for gene therapy applications. Curr. Opin. Biotechnol. 11: 205–208 CrossRefGoogle Scholar
  136. Wu N., Watkins S.C., Schaffer P.A. and DeLuca N.A. (1996). Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70: 6358–6369 Google Scholar
  137. Wu S.C., Huang G.Y. and Liu J.H. (2002). Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol. Prog. 18: 617–622 CrossRefGoogle Scholar
  138. Xiao X., Li J. and Samulski R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72: 2224–2232 Google Scholar
  139. Xie L., Metallo C., Warren J., Pilbrough W., Peltier J., Zhong T., Pikus L., Yancy A., Leung J., Aunins J.G. and Zhou W. (2003). Large-scale propagation of a replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 cell culture under sparging conditions. Biotechnol. Bioeng. 83: 45–52 CrossRefGoogle Scholar
  140. Xie L., Pilbrough W., Metallo C., Zhong T., Pikus L., Leung J., Aunins J.G. and Zhou W. (2002). Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions. Biotechnol. Bioeng. 80: 569–579 CrossRefGoogle Scholar
  141. Yamaji H. and Fukuda H. (1992). Growth and death behavior of anchorage-independent animal-cells immobilized within porous support matrices. App. Micro. Biotechnol. 37: 244–251 Google Scholar
  142. Yuk I.H.Y., Olsen M.M., Geyer S. and Forestell S.P. (2004). Perfusion cultures of human tumor cells: A scalable production platform for oncolytic adenoviral vectors. Biotechnol. Bioeng. 86: 637–642 CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • James N. Warnock
    • 1
  • Otto-Wilhelm Merten
    • 2
  • Mohamed Al-Rubeai
    • 3
    Email author
  1. 1.Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateUSA
  2. 2.GénéthonEvry-CedexFrance
  3. 3.School of Chemical and Bioprocess EngineeringUniversity College DublinBelfieldIreland

Personalised recommendations