Advertisement

Cytotechnology

, 50:57 | Cite as

Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems

  • M. ButlerEmail author
Article

Abstract

Many biopharmaceuticals are now produced as secreted glycoproteins from mammalian cell culture. The glycosylation profile of these proteins is essential to ensure structural stability and biological and clinical activity. However, the ability to control the glycosylation is limited by our understanding of the parameters that affect the heterogeneity of added glycan structures. It is clear that the glycosylation process is affected by a number of factors including the 3-dimensional structure of the protein, the enzyme repertoire of the host cell, the transit time in the Golgi and the availability of intracellular sugar-nucleotide donors. From a process development perspective there are many culture parameters that can be controlled to enable a consistent glycosylation profile to emerge from each batch culture. A further, but more difficult goal is to control the culture conditions to enable the enrichment of specific glycoforms identified with desirable biological activities. The purpose of this paper is to discuss the cellular metabolism associated with protein glycosylation and review the attempts to manipulate, control or engineer this metabolism to allow the expression of human glycosylation profiles in producer lines such as genetically engineered Chinese hamster ovary (CHO) cells.

Keywords

Antennarity CHO cells Fucosylation Galactosylation Glycoprotein Glycosylation Golgi N-glycan O-glycan Sequon Sialylation 

Abbreviation

ADCC

antibody-mediated cytotoxicity

BHK

baby hamster kidney (cells)

C2GnT

core 2 GlcNAC transferase (UDP-GlcNAc: Galβ1,3GalNAc-R β1,6-N-acetyl glucosaminyl transferase)

CHO

Chinese hamster ovary (cells)

CMP

cytidine monophosphate

DO

dissolved oxygen

EPO

erythropoietin

ER

endoplasmic reticulum

FT

fucosyl transferase

G0

agalactosylated glycans

G1

monogalactosylated glycans

G2

digalactosylated glycans

GalNAc

N-acetyl galactosamine

GDM

GDP mannose 4,6 dehydratase

GDP

guanosine diphosphate

GFAT

glutamine: fructose 6-phosphate amidotransferase

GlcNAc

N-acetyl glucosamine

GnT

N-acetyl glucosaminyl transferase

HIV

human immunodeficiency virus

IFN

interferon

IgG

immunoglobulin

LAMP

lysosomal membrane glycoprotein

ManNAc

N-acetyl mannosamine

mPL-I

mouse placental lactogen I

NANA

N-acetyl-neuraminic acid

NGNA

N-glycolyl-neuraminic acid

OST

oligosaccharyltransferase

ST

sialyl transferase

ST3Gal1

sialyl transferase 3 (CMP-sialic acid: Galβ1,3GalNAc2,3 sialyl transferase)

TIMP

tissue inhibitors of metalloproteinases

t-PA

tissue plasminogen activator

UDP

uridine diphosphate

UTP

uridine triphosphate

References

  1. Allen S., Naim H.Y. and Bulleid N.J. (1995). Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J. Biol. Chem. 270: 4797–4804CrossRefGoogle Scholar
  2. Andersen D.C. (2004). Cell Culture Effects on the Glycosylation of Therapeutic Proteins. Bioprocess International. IBC Life Sciences, BostonGoogle Scholar
  3. Andersen D.C., Bridges T., Gawlitzek M. and Hoy C. (2000). Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 70: 25–31CrossRefGoogle Scholar
  4. Andersen D.C. and Goochee C.F. (1994). The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr. Opin. Biotechnol. 5: 546–549CrossRefGoogle Scholar
  5. Andersen D.C. and Goochee C.F. (1995). The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol. Bioeng. 47: 96–105CrossRefGoogle Scholar
  6. Andersen D.C. and Krummen L. (2002). Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117–123CrossRefGoogle Scholar
  7. Angata T. and Varki A. (2002). Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102: 439–469CrossRefGoogle Scholar
  8. Apweiler R., Hermjakob H. and Sharon N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473: 4–8Google Scholar
  9. Backstrom M., Link T., Olson F.J., Karlsson H., Graham R., Picco G., Burchell J., Taylor-Papadimitriou J., Noll T. and Hansson G.C. (2003). Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochem. J. 376: 677–686CrossRefGoogle Scholar
  10. Baker K.N., Rendall M.H., Hills A.E., Hoare M., Freedman R.B. and James D.C. (2001). Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol. Bioeng. 73: 188–202CrossRefGoogle Scholar
  11. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D. and al-Awqati Q. (1991). Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330): 70–73CrossRefGoogle Scholar
  12. Borys M.C., Linzer D.I. and Papoutsakis E.T. (1993). Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (NY) 11: 720–724CrossRefGoogle Scholar
  13. Bragonzi A., Distefano G., Buckberry L.D., Acerbis G., Foglieni C., Lamotte D., Campi G., Marc A., Soria M.R., Jenkins N. and Monaco L. (2000). A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta. 1474(3): 273–282Google Scholar
  14. Breton C., Oriol R. and Imberty A. (1998). Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8: 87–94CrossRefGoogle Scholar
  15. Butler M. (2004). Animal Cell Culture and Technology. Bios Scientific, OxfordGoogle Scholar
  16. Butler M., Quelhas D., Critchley A.J., Carchon H., Hebestreit H.F., Hibbert R.G., Vilarinho L., Teles E., Matthijs G., Schollen Argibay P., Harvey D.J., Dwek R.A., Jaeken J. and Rudd P.M. (2003). Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific enzyme defect andcoupled with proteomics, provides an insight into pathogenesis. Glycobiology 13: 601–622CrossRefGoogle Scholar
  17. Butler M. and Spier R.E. (1984). The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier cultures. J. Biotechnol. 1: 187–196CrossRefGoogle Scholar
  18. Chee Furng Wong D., Tin Kam Wong K., Tang Goh L., Kiat Heng C. and Gek Sim Yap M. (2005). Impact of dynamic online fed-batch strategies on metabolismproductivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng. 89: 164–177CrossRefGoogle Scholar
  19. Chotigeat W., Watanapokasin Y., Mahler S. and Gray P.P. (1994). Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15: 217–221CrossRefGoogle Scholar
  20. Clark K.J., Griffiths J., Bailey K.M. and Harcum S.W. (2005). Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Biotechnol. Bioeng. 90: 568–577CrossRefGoogle Scholar
  21. Curling E.M., Hayter P.M., Baines A.J., Bull A.T., Gull K., Strange P.G. and Jenkins N. (1990). Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272: 333–337Google Scholar
  22. Davidson S.K. and Hunt L.A. (1985). Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose. J. Gen. Virol. 66: 1457–1468CrossRefGoogle Scholar
  23. Davies J., Jiang L., Pan L.Z., LaBarre M.J., Anderson D. and Reff M. (2001). Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 74: 288–294CrossRefGoogle Scholar
  24. Dawson G., Moskal J.R. and Dawson S.A. (2004). Transfection of 2,6 and 2,3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J. Neurochem. 89(6): 1436–1444CrossRefGoogle Scholar
  25. Doyle C. and Butler M. (1990). The effect of pH on the toxicity of ammonia to a murine hybridoma. J. Biotechnol. 15: 91–100CrossRefGoogle Scholar
  26. Egrie J.C., Dwyer E., Browne J.K., Hitz A. and Lykos M.A. (2003). Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31: 290–299CrossRefGoogle Scholar
  27. Ellgaard L. and Helenius A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4(3): 181–191CrossRefGoogle Scholar
  28. Erbayraktar S., Grasso G., Sfacteria A., Xie Q.W., Coleman T., Kreilgaard M., Torup L., Sager T., Erbayraktar Z., Gokmen N., Yilmaz O., Ghezzi P., Villa P., Fratelli M., Casagrande S., Leist M., Helboe L., Gerwein J., Christensen S., Geist M.A., Pedersen L.O., Cerami-Hand C., Wuerth J.P., Cerami A. and Brines M. (2003). Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl. Acad. Sci. U S A 100: 6741–6746CrossRefGoogle Scholar
  29. Follstad B.D. 2004. A Method for Increasing Glycoprotein Sialylation in Mammalian Cells. Cell Culture Engineering IX Poster.Google Scholar
  30. Freeze H.H.J. (2002). Sweet solution: sugars to the rescue. Cell Biol. 158: 615–616CrossRefGoogle Scholar
  31. Gavel Y. (1990). Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3(5): 433–442CrossRefGoogle Scholar
  32. Gawlitzek M., Valley U., Nimtz M., Wagner R. and Conradt H.S. (1995). Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J. Biotech. 42: 117–131CrossRefGoogle Scholar
  33. Gawlitzek M., Valley U. and Wagner R. (1998). Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 57: 518–528CrossRefGoogle Scholar
  34. Goochee C.F. 1992. Bioprocess factors affecting glycoprotein oligosaccharide structure. Dev. Biol. Stand. 76: 95–104.Review.Google Scholar
  35. Goto M., Akai K., Murakami A., Hashimoto C., Tsuda E., Ueda M., Kawanishi G., Takahashi N., Ishimoto A., Chiba H. and Sasaki R. (1988). Production of recombinant human erythropoietin in mammalian cells: Host–cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology 6: 67–71CrossRefGoogle Scholar
  36. Grabenhorst E., Hoffmann A., Nimtz M., Zettlmeissl G. and Conradt H.S. (1995). Construction of stable BHK-21 cells coexpressing human secretory glycoprotein and human Gal (β1–4)GlcNAc-R α2,6-sialyltransferase. Eur. J. Biochem. 232: 718–725CrossRefGoogle Scholar
  37. Grammatikos S.I., Valley U., Nimtz M., Conradt H.S. and Wagner R. (1998). Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 14: 410–419CrossRefGoogle Scholar
  38. Gu X. and Wang D.I. (1998). Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58(6): 642–648CrossRefGoogle Scholar
  39. Hayter P.M., Curling E.M.A., Baines A.J., Jenkins N., Salmon I., Strange P.G., Tong J.M. and Bull A.T. (1992). Glucose-limited chemostat culture of chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 39: 327–335CrossRefGoogle Scholar
  40. Heidemann R., Lutkemeyer D., Buntemeyer H. and Lehmann J. (1998). Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentration upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology 26: 185–197CrossRefGoogle Scholar
  41. Hirschberg C.B. (2001). Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J. Clin. Invest. 108: 3–6Google Scholar
  42. Hokke C.H., Bergwerff A.A., Kamerling J.P., Vliegenthart J.F. and Dedem G.W. (1995). Structural analysis of the sialylated N- and O-linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur. J. Biochem. 228: 981–1008CrossRefGoogle Scholar
  43. Jan D.C., Petch D.A., Huzel N. and Butler M. (1997). The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous cultures. Biotech. Bioeng. 54: 153–164CrossRefGoogle Scholar
  44. Jenkins N. and Curling E.M. (1994). Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364CrossRefGoogle Scholar
  45. Jenkins N., Parekh R.B. and James D.C. (1996). Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 14: 975–981CrossRefGoogle Scholar
  46. Jones M.B., Teng H., Rhee J.K., Lahar N., Baskaran G. and Yarema K.J. (2004). Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85(4): 394–405CrossRefGoogle Scholar
  47. Kagawa Y., Takasaki S., Utsumi J., Hosoi K., Shimizu H., Kochibe N. and Kobata A. (1988). Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J. Biol. Chem. 263: 17508–17515Google Scholar
  48. Kornfeld R. and Kornfeld S. (1985). Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664CrossRefGoogle Scholar
  49. Kunkel J.P., Jan D.C., Jamieson J.C. and Butler M. (1998). Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J. Biotechnol. 62: 55–71CrossRefGoogle Scholar
  50. Kunkel J.P., Yan W.Y., Butler M. and Jamieson J.C. 2003. Decreased monoclonal IgG1 galactosylation at reduced dissolved oxygen concentration is not a result of lowered galactosyltransferase activity in vitro. Society for Glycobiology Meeting, San Diego, CA, Glycobiology 13: 875.Google Scholar
  51. Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N. and Gregory T.J. (1990). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 10373–10382Google Scholar
  52. Longmore G.D. and Schachter H. (1982). Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-beta-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-alpha-l-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr. Res. 100: 365–392CrossRefGoogle Scholar
  53. Meynial-Salles I. and Combes D. (1996). J. Biotechnol. 46: 1–14CrossRefGoogle Scholar
  54. Miyoshi E., Noda K., Ko J.H., Ekuni A., Kitada T., Uozumi N., Ikeda Y., Matsuura N., Sasaki Y., Hayashi N., Hori M. and Taniguchi N. (1999). Overexpression of alpha 1–6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res. 59: 2237–2243Google Scholar
  55. Nabi I.R. and Dennis J.W. (1998). The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 8: 947–953CrossRefGoogle Scholar
  56. Narhi L.O., Arakawa T., Aoki K.H., Elmore R., Rohde M.F., Boone T. and Strickland T.W. (1991). The effect of carbohydrate on the structure and stability of erythropoietin. J. Biol. Chem. 266: 23022–23026Google Scholar
  57. Noda K., Miyoshi E., Uozumi N., Gao C.X., Suzuki K., Hayashi N., Hori M. and Taniguchi N. (1998). High expression of alpha-1–6 fucosyltransferase during rat hepatocarcinogenesis. Int. J. Cancer. 75: 444–450CrossRefGoogle Scholar
  58. Nyberg G.B., Balcarcel R.R., Follstad B.D., Stephanopoulos G. and Wang D.I. (1999). Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 62: 336–347CrossRefGoogle Scholar
  59. Ohyama C., Smith P.L., Angata K., Fukuda M.N., Lowe J.B. and Fukuda M. (1998). Molecular cloning and expression of GDP-d-mannose-4,6-dehydratasea key enzyme for fucose metabolism defective in Lec13 cells. J. Biol. Chem. 273: 14582–14587CrossRefGoogle Scholar
  60. Okazaki A., Shoji-Hosaka E., Nakamura K., Wakitani M., Uchida K., Kakita S., Tsumoto K., Kumagai I. and Shitara K. (2004). Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and Fcgamma, RIIIa. J. Mol. Biol. 336: 1239–1249CrossRefGoogle Scholar
  61. Pels Rijcken W.R., Overdijk B. and Ferwerda W. (1995). The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870Google Scholar
  62. Perlman S., Christiansen J., Gram-Nielsen S., Jeppesen C.B., Andersen K.V., Halkier T., Okkels S. and Schambye H.T. (2003). Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J. Clin. Endocrinol. Metab. 88: 3227–3235CrossRefGoogle Scholar
  63. Petrescu A.J., Milac A.L., Petrescu S.M., Dwek R.A. and Wormald M.R. (2004). Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structureand folding. Glycobiology 14: 103–114CrossRefGoogle Scholar
  64. Prati E.G., Matasci M., Suter T.B., Dinter A., Sburlati A.R. and Bailey J.E. (2000). Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 68(3): 239–244CrossRefGoogle Scholar
  65. Rademacher T.W., Jaques A. and Williams P.J. (1996). The defining characteristics of immunoglobulin glycosylation. In: Isenberg, D.A. and Rademacher, T.W. (eds) Abnormalities of IgG Glycosylation and Immunological Disorders, pp 1–44. publ. Wiley, NYGoogle Scholar
  66. Raju T.S., Briggs J.B., Borge S.M. and Jones A.J. (2000). Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10: 477–486CrossRefGoogle Scholar
  67. Raju T.S., Briggs J.B., Chamow S.M., Winkler M.E. and Jones A.J. (2001). Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40: 8868–8876CrossRefGoogle Scholar
  68. Rearick J.I., Chapman A. and Kornfeld S. (1981). Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J. Biol. Chem. 256: 6255–6261Google Scholar
  69. Restelli V. and Butler M. (2002). The effect of cell culture parameters on protein glycosylation. In: Al-Rubeai, M (eds) Glycosylation, vol 3, pp 61–92. Kluwer, DordrechtGoogle Scholar
  70. Reuter G. and Gabius H.J. 1999. Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol. Life Sci. 55: 368–422.Review.Google Scholar
  71. Rijcken P.W.R., Overdijk B. and Ferwerda W. (1995). The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870Google Scholar
  72. Rothman R.J., Warren L., Vliegenthart J.F. and Hard K.J. (1989). Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry 28: 1377–1384CrossRefGoogle Scholar
  73. Rudd P.M. and Dwek R.A. (1997). Glycosylation: heterogeneity and the 3D structure of proteins. Critical Rev. Biochem. Mol. Biol. 32: 1–100CrossRefGoogle Scholar
  74. Saitoh A., Aoyagi Y. and Asakura H. (1993). Structural analysis on the sugar chains of human alpha 1-antitrypsin: presence of fucosylated biantennary glycan in hepatocellular carcinoma. Arch. Biochem. Biophys. 303: 281–287CrossRefGoogle Scholar
  75. Sburlati A.R., Umana P., Prati E.G. and Bailey J.E. (1998). Synthesis of bisected glycoforms of recombinant IFN-beta by overexpression of beta-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol. Prog. 14(2): 189–192CrossRefGoogle Scholar
  76. Schweikart F., Jones R., Jaton J.C. and Hughes G.J. (1999). Rapid structural characterisation of a murine monoclonal IgA alpha chain: heterogeneity in the oligosaccharide structures at a specific site in samples produced in different bioreactor systems. J. Biotechnol. 69: 191–201CrossRefGoogle Scholar
  77. Sears P. and Wong C.H.. (1998). Enzyme action in glycoprotein synthesis. Cell. Mol. Life Sci. 54: 223–252CrossRefGoogle Scholar
  78. Seppala R., Lehto V.P. and Gahl W.A. (1999). Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64: 1563–1569CrossRefGoogle Scholar
  79. Sheeley D.M., Merrill B.M. and Taylor L.C. (1997). Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal. Biochem. 247: 102–110CrossRefGoogle Scholar
  80. Shelikoff M., Sinskey A.J. and Stephanopoulos G. (1994). The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology 15: 195–208CrossRefGoogle Scholar
  81. Shields R.L., Lai J., Keck R., Oȁ9Connell L.Y., Hong K., Meng Y.G., Weikert S.H. and Presta L.G. (2002). Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277: 26733–26740CrossRefGoogle Scholar
  82. Shinkawa T., Nakamura K., Yamane N., Shoji-Hosaka E., Kanda Y., Sakurada M., Uchida K., Anazawa H., Satoh M., Yamasaki M., Hanai N. and Shitara K. (2003). The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278: 3466–3473CrossRefGoogle Scholar
  83. Shriver Z., Raguram S. and Sasisekharan R. (2004). Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3: 863–873CrossRefGoogle Scholar
  84. Spellman M.W. (1990). Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest. Anal. Chem. 62: 1714–1722CrossRefGoogle Scholar
  85. Srikrishna G., Varki N.M., Newell P.C., Varki A. and Freeze H.H. (1997). An IgG monoclonal antibody against Dictyostelium discoideum glycoproteins specifically recognizes Fucalpha1,6GlcNAcbeta in the core of N-linked glycans. Localized expression of core-fucosylated glycoconjugates in human tissues. J. Biol. Chem. 272: 25743–25752CrossRefGoogle Scholar
  86. Stark N.J. and Heath E.C. (1979). Glucose-dependent glycosylation of secretory glycoprotein in mouse myeloma cells. Arch. Biochem. Biophys. 192: 599–609CrossRefGoogle Scholar
  87. Storring P.L. (1992). Assaying glycoprotein hormones–the influence of glycosylation on immunoreactivity. Trends Biotechnol. 10: 427–432CrossRefGoogle Scholar
  88. Stubbs H.J., Lih J.J., Gustafson T.L. and Rice K.G. (1996). Influence of core fucosylation on the flexibility of a biantennary N-linked oligosaccharide. Biochemistry 35: 937–947CrossRefGoogle Scholar
  89. Sturla L., Etzioni A., Bisso A., Zanardi D., Silengo L. and Tonetti M. (1998). Defective intracellular activity of GDP-d-mannose-4,6-dehydratase in leukocyte adhesion deficiency type II syndrome. FEBS Lett. 429: 274–278CrossRefGoogle Scholar
  90. Tachibana H., Kim J. and Shivahata S. (1997). Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetyl glucosamine-supplemented hybridoms cultures. Cytotechnology 23: 151–159CrossRefGoogle Scholar
  91. Takahashi T., Ikeda Y., Miyoshi E., Yaginuma Y., Ishikawa M. and Taniguchi N. (2000). Alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int. J. Cancer. 88: 914–919CrossRefGoogle Scholar
  92. Takeuchi M., Takasaki S., Miyazaki H., Kato T., Hoshi S., Kochibe N. and Kobata A. (1988). Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657–3663Google Scholar
  93. Thotakura N.R., Desai R.K., Bates L.G., Cole E.S., Pratt B.M. and Weintraub B.D. (1991). Biological activity and metabolic clearance of a recombinant human thyrotropin produced in Chinese hamster ovary cells. Endocrinology 128: 341–348CrossRefGoogle Scholar
  94. Tonetti M., Sturla L., Bisso A. and Benatti U. (1996). Synthesis of GDP-l-fucose by the human FX protein. J. Biol. Chem. 271: 27274–27279CrossRefGoogle Scholar
  95. Umana P. and Bailey J.E. (1997). A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55: 890–908CrossRefGoogle Scholar
  96. Umana P., Jean-Mairet J., Moudry R., Amstutz H. and Bailey J.E. (1999). Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17: 176–180CrossRefGoogle Scholar
  97. Uozumi N., Yanagidani S., Miyoshi E., Ihara Y., Sakuma T., Gao C.X., Teshima T., Fujii S., Shiba T. and Taniguchi N. (1996). Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-d-glucosaminide alpha 1–6 fucosyltransferase. J. Biol. Chem. 271: 27810–27817CrossRefGoogle Scholar
  98. Valley U., Nimtz M., Conradt H.S. and Wagner R. (1999). Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol. Bioeng. 64(4): 401–417CrossRefGoogle Scholar
  99. Rudd P.M., Dwek R.A. and Opdenakker G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33(3): 151–208CrossRefGoogle Scholar
  100. Voynow J.A., Kaiser R.S., Scanlin T.F. and Glick M.C. (1991). Purification and characterization of GDP-l-fucose-N-acetyl beta-d-glucosaminide alpha 1–6 fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J. Biol. Chem. 266: 21572–21577Google Scholar
  101. Walmsley A.R. and Hooper N.M. (2003). Glycosylation efficiency of Asn-Xaa-Thr sequons is independent of distance from the C-terminus in membrane dipeptidase. Glycobiology 13(9): 641–646CrossRefGoogle Scholar
  102. Wang W.C., Lee N., Aoki D., Fukuda M.N. and Fukuda M. (1991). The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J. Biol. Chem. 266: 23185–23190Google Scholar
  103. Wang W., Li W., Ikeda Y., Miyagawa J.I., Taniguchi M., Miyoshi E., Sheng Y., Ekuni A., Ko J.H., Yamamoto Y., Sugimoto T., Yamashita S., Matsuzawa Y., Grabowski G.A., Honke K. and Taniguchi N. (2001). Ectopic expression of alpha1,6 fucosyltransferase in mice causes steatosis in the liver and kidney accompanied by a modification of lysosomal acid lipase. Glycobiology 11: 165–174CrossRefGoogle Scholar
  104. Wasley L.C., Timony G., Murtha P., Stoudemire J., Dorner A.J., Caro J., Krieger M. and Kaufman R.J. (1991). Blood 77: 2624–2632Google Scholar
  105. Weikert S., Papac D., Briggs J., Cowfer D., Tom S., Gawlitzek M., Lofgren J., Mehta S., Chisholm V., Modi N., Eppler S., Carroll K., Chamow S., Peers D., Berman P. and Krummen L. (1999). Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116–1121CrossRefGoogle Scholar
  106. Weiss P. and Ashwell G. (1989). The asialoglycoprotein receptor: properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169–184Google Scholar
  107. Wormald M.R., Rudd P.M., Harvey D.J., Chang S.C., Scragg I.G. and Dwek R.A. (1997). Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36: 1370–1380CrossRefGoogle Scholar
  108. Xie L. and Wang D.I. (1997). Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol. 15: 109–113CrossRefGoogle Scholar
  109. Yamashita K., Koide N., Endo T., Iwaki Y. and Kobata A. (1989). Altered glycosylation of serum transferring of patients with hepatocellular carcinoma. J. Biol. Chem. 264: 2415–2423Google Scholar
  110. Yan A. and Lennarz W.J. (2005). Unraveling the mechanism of protein N-glycosylation. J. Biol. Chem. 280: 3121–3124CrossRefGoogle Scholar
  111. Yanagidani S., Uozumi N., Ihara Y., Miyoshi E., Yamaguchi N. and Taniguchi N. (1997). Purification and cDNA cloning of GDP-l-Fuc:N-acetyl-beta-d-glucosaminide:alpha1–6 fucosyltransferase (alpha1–6 FucT) from human gastric cancer MKN45 cells. J. Biochem. 121: 626–632Google Scholar
  112. Yang M. and Butler M. (2000). Effects of ammonia on CHO cell growtherythropoietin production and glycosylation. Biotechnol. Bioeng. 68: 370–380CrossRefGoogle Scholar
  113. Zanghi J.A., Mendoza T.P., Knop R.H. and Miller W.M. (1998). Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J. Cell Physiol. 177: 248–263CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipeg, ManitobaCanada

Personalised recommendations