Skip to main content
Log in

Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The research community’s treatise on computational economics and financial models has promising interest for the exploration and exploitation of artificial intelligence (AI)-based computing paradigm to offer enriched efficacies for business stratagems, consumer utility, and scarce resource management for enriched society evolution. In this study, AI-based neuro-stochastic Bayesian networks (NSBNs) are presented for mathematical models that govern the dynamics of nonlinear chaotic financial differential systems (NCFDSs). The descriptive expressions for NCFDS are portrayed through multi-class differential compartments for macroeconomic agents in terms of interest rate, investment demand, and price index. The reference data acquisition for the execution of the multi-layer structure of NSBNs is performed with Adams numerical procedure for sundry scenarios of NCFDSs by varying the cost per investment, saving amount, as well as, commercial market demand elasticity. The designed NSBN outcomes consistently overlap with the reference solutions having negligible magnitude of error for each scenario of NCFDS. The efficacy of proposed NSBNs is presented through mean square error based convergence curves, illustrations for adaptive controlling parameters, 2D–3D visual depictions, error histogram studies, and regression indices for variants of nonlinear chaotic differential systems in mathematical finance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data is associated with this manuscript.

References

  • Abdelkareem, M. A., Soudan, B., Mahmoud, M. S., Sayed, E. T., AlMallahi, M. N., Inayat, A., & Olabi, A. G. (2022). Progress of artificial neural networks applications in hydrogen production. Chemical Engineering Research and Design, 182, 66–86.

    Article  Google Scholar 

  • Ahmad, I., Ilyas, H., Raja, M. A. Z., Cheema, T. N., Sajid, H., Nisar, K. S., & Abbas, M. (2022). Intelligent computing based supervised learning for solving nonlinear system of malaria endemic model. AIMS Mathematics, 7(11), 20341–20369.

    Article  Google Scholar 

  • Ahmad, I., Zahid, H., Ahmad, F., Raja, M. A. Z., & Baleanu, D. (2019). Design of computational intelligent procedure for thermal analysis of porous fin model. Chinese Journal of Physics, 59, 641–655.

    Article  Google Scholar 

  • Ali, K., Hongbing, H., Liew, C. Y., & Jianguo, D. (2023). Governance perspective and the effect of economic policy uncertainty on financial stability: Evidence from developed and developing economies. Economic Change and Restructuring, 56(3), 1971–2002.

    Article  Google Scholar 

  • Anandita Iyer, A., & Umadevi, K. S. (2023). Role of AI and its impact on the development of cyber security applications. In: Sarveshwaran, V., Chen, J.IZ., Pelusi, D. (eds.) Artificial Intelligence and Cyber Security in Industry 4.0 (pp. 23–46). Springer. https://doi.org/10.1007/978-981-99-2115-7_2.

  • Annaby, M. H., & Al-Abdi, I. A. (2023). A Gaussian regularization for derivative sampling interpolation of signals in the linear canonical transform representations. Signal, Image and Video Processing, 17, 2157–2165.

    Article  Google Scholar 

  • Atangana, A., Bonyah, E., & Elsadany, A. A. (2020). A fractional order optimal 4D chaotic financial model with Mittag–Leffler law. Chinese Journal of Physics, 65, 38–53.

    Article  Google Scholar 

  • Athalye, V., & Haven, E. (2023). Causal viewpoint and ensemble interpretation: From physics to the social sciences. Philosophical Transactions of the Royal Society A, 381(2252), 20220279.

    Article  Google Scholar 

  • Bao, C., Gao, D., Gu, W., Xu, L., & Goodman, E. D. (2023). A new adaptive decomposition-based evolutionary algorithm for multi-and many-objective optimization. Expert Systems with Applications, 213, 119080.

    Article  Google Scholar 

  • Bas, E., Egrioglu, E., & Tunc, T. (2023). Multivariate picture fuzzy time series: New definitions and a new forecasting method based on Pi-sigma artificial neural network. Computational Economics, 61(1), 139–164.

    Article  Google Scholar 

  • Bazrkar, M. J., & Hosseini, S. (2023). Predict stock prices using supervised learning algorithms and particle swarm optimization algorithm. Computational Economics, 62(1), 165–186.

    Article  Google Scholar 

  • Behera, S., Nayak, S. C., & Kumar, A. P. (2023). A comprehensive survey on higher order neural networks and evolutionary optimization learning algorithms in financial time series forecasting. Archives of Computational Methods in Engineering, 30, 4401–4448.

    Article  Google Scholar 

  • Bejani, M. M., & Ghatee, M. (2021). A systematic review on overfitting control in shallow and deep neural networks. Artificial Intelligence Review, 54, 6391–6438.

    Article  Google Scholar 

  • Bilbao, I., & Bilbao, J. (2017). Overfitting problem and the over-training in the era of data: Particularly for Artificial Neural Networks. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 173–177). IEEE.

  • Bukhari, A. H., Shoaib, M., Kiani, A. K., Chaudhary, N. I., Raja, M. A. Z., & Shu, C. M. (2023). Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. Mathematics and Computers in Simulation. https://doi.org/10.1016/j.matcom.2023.06.005

    Article  Google Scholar 

  • Bukhari, A. H., Sulaiman, M., Raja, M. A. Z., Islam, S., Shoaib, M., & Kumam, P. (2020). Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. Alexandria Engineering Journal, 59(5), 3325–3345.

    Article  Google Scholar 

  • Çalış, Y., Demirci, A., & Özemir, C. (2022). Hopf bifurcation of a financial dynamical system with delay. Mathematics and Computers in Simulation, 201, 343–361.

    Article  Google Scholar 

  • Charpentier, A., Elie, R., & Remlinger, C. (2023). Reinforcement learning in economics and finance. Computational Economics, 62, 425–462. https://doi.org/10.1007/s10614-021-10119-4

    Article  Google Scholar 

  • Chen, S. B., Jahanshahi, H., Abba, O. A., Solís-Pérez, J. E., Bekiros, S., Gómez-Aguilar, J. F., & Chu, Y. M. (2020). The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization. Chaos, Solitons & Fractals, 140, 110223.

    Article  Google Scholar 

  • Chen, W. C. (2008). Nonlinear dynamics and chaos in a fractional-order financial system. Chaos, Solitons & Fractals, 36(5), 1305–1314.

    Article  Google Scholar 

  • Douiba, M., Benkirane, S., Guezzaz, A., & Azrour, M. (2023). An improved anomaly detection model for IoT security using decision tree and gradient boosting. The Journal of Supercomputing, 79(3), 3392–3411.

    Article  Google Scholar 

  • Faheem, M., Raza, A., & Khan, A. (2021). Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Mathematics and Computers in Simulation, 180, 72–92.

    Article  Google Scholar 

  • Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics, 81, 709–727.

    Article  Google Scholar 

  • Gogas, P., & Papadimitriou, T. (2021). Machine learning in economics and finance. Computational Economics, 57, 1–4.

    Article  Google Scholar 

  • Gouravaraju, S., Narayan, J., Sauer, R. A., & Gautam, S. S. (2023). A Bayesian regularization-backpropagation neural network model for peeling computations. The Journal of Adhesion, 99(1), 92–115.

    Article  Google Scholar 

  • Hadian Rasanan, A. H., Bajalan, N., Parand, K., & Rad, J. A. (2020). Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network. Mathematical Methods in the Applied Sciences, 43(3), 1437–1466.

    Article  Google Scholar 

  • Hajeb, M., Hamzeh, S., Alavipanah, S. K., Neissi, L., & Verrelst, J. (2023). Simultaneous retrieval of sugarcane variables from Sentinel-2 data using Bayesian regularized neural network. International Journal of Applied Earth Observation and Geoinformation, 116, 103168.

    Article  Google Scholar 

  • Hajipour, A., Hajipour, M., & Baleanu, D. (2018). On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system. Physica a: Statistical Mechanics and Its Applications, 497, 139–153.

    Article  Google Scholar 

  • Hanif, A., Kashif Butt, A. I., & Ahmad, W. (2023). Numerical approach to solve Caputo-Fabrizio-fractional model of corona pandemic with optimal control design and analysis. Mathematical Methods in the Applied Sciences, 46, 9751–9782.

    Article  Google Scholar 

  • Huang, C., Cai, L., & Cao, J. (2018). Linear control for synchronization of a fractional-order time-delayed chaotic financial system. Chaos, Solitons & Fractals, 113, 326–332.

    Article  Google Scholar 

  • Ilyas, H., Ahmad, I., Raja, M. A. Z., & Shoaib, M. (2021). A novel design of Gaussian WaveNets for rotational hybrid nanofluidic flow over a stretching sheet involving thermal radiation. International Communications in Heat and Mass Transfer, 123, 105196.

    Article  Google Scholar 

  • Jahanshahi, H., Orozco-López, O., Munoz-Pacheco, J. M., Alotaibi, N. D., Volos, C., Wang, Z., & Chu, Y. M. (2021a). Simulation and experimental validation of a non-equilibrium chaotic system. Chaos, Solitons & Fractals, 143, 110539.

    Article  Google Scholar 

  • Jahanshahi, H., Sajjadi, S. S., Bekiros, S., & Aly, A. A. (2021b). On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller. Chaos, Solitons & Fractals, 144, 110698.

    Article  Google Scholar 

  • Jin, T., & Yang, X. (2021). Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market. Mathematics and Computers in Simulation, 190, 203–221.

    Article  Google Scholar 

  • Khan, H. A., Ghorbani, S., Shabani, E., & Band, S. S. (2024). Enhancement of neural networks model’s predictions of currencies exchange rates by phase space reconstruction and Harris Hawks’ optimization. Computational Economics, 63, 835–860. https://doi.org/10.1007/s10614-023-10361-y.

    Article  Google Scholar 

  • Kordkheili, M. S., & Rahimpour, F. (2023). Artificial neural network and semi-empirical modeling of industrial-scale Gasoil hydrodesulfurization reactor temperature profile. Mathematics and Computers in Simulation, 206, 198–215.

    Article  Google Scholar 

  • Kumar, Y., & Singh, V. K. (2021). Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation. Mathematics and Computers in Simulation, 190, 531–569.

    Article  Google Scholar 

  • Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1), 183–208.

    Article  Google Scholar 

  • Lei, Y., Qiaoming, H., & Tong, Z. (2023). Research on supply chain financial risk prevention based on machine learning. Computational Intelligence and Neuroscience, 2023, 6531154. https://doi.org/10.1155/2023/6531154

    Article  Google Scholar 

  • Li, X., Wang, J., & Yang, C. (2023). Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy. Neural Computing and Applications, 35(3), 2045–2058.

    Article  Google Scholar 

  • Liu, Y., Wang, Z., & Huang, X. (2022). Multistability analysis of state-dependent switched Hopfield neural networks with the Gaussian-wavelet-type activation function. Mathematics and Computers in Simulation, 196, 232–250.

    Article  Google Scholar 

  • Lodhi, S., Manzar, M. A., & Raja, M. A. Z. (2019). Fractional neural network models for nonlinear Riccati systems. Neural Computing and Applications, 31, 359–378.

    Article  Google Scholar 

  • Magazzino, C., & Mele, M. (2022). Can a change in FDI accelerate GDP growth? Time-series and ANNs evidence on Malta. The Journal of Economic Asymmetries, 25, e00243.

    Article  Google Scholar 

  • Mak, S., Sung, C. L., Wang, X., Yeh, S. T., Chang, Y. H., Joseph, V. R., & Wu, C. J. (2018). An efficient surrogate model for emulation and physics extraction of large eddy simulations. Journal of the American Statistical Association, 113(524), 1443–1456.

    Article  Google Scholar 

  • Milovanović, S., & von Sydow, L. (2020). A high order method for pricing of financial derivatives using radial basis function generated finite differences. Mathematics and Computers in Simulation, 174, 205–217.

    Article  Google Scholar 

  • Nisa, S. U., Mahmood, A., Ujager, F. S., & Malik, M. (2023). HIV/AIDS predictive model using random forest based on socio-demographical, biological and behavioral data. Egyptian Informatics Journal, 24(1), 107–115.

    Article  Google Scholar 

  • Nonaka, M., Agüero, M., & Kovalsky, M. (2023). Machine learning algorithms predict experimental output of chaotic lasers. Optics Letters, 48(4), 1060–1063.

    Article  Google Scholar 

  • Oyedele, A. A., Ajayi, A. O., Oyedele, L. O., Bello, S. A., & Jimoh, K. O. (2023). Performance evaluation of deep learning and boosted trees for cryptocurrency closing price prediction. Expert Systems with Applications, 213, 119233.

    Article  Google Scholar 

  • Piazzola, C., Tamellini, L., Pellegrini, R., Broglia, R., Serani, A., & Diez, M. (2023). Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance. Engineering with Computers, 39(3), 2209–2237.

    Article  Google Scholar 

  • Ping, M., Jia, X., Papadimitriou, C., Han, X., Jiang, C., & Yan, W. (2023). A hierarchical Bayesian framework embedded with an improved orthogonal series expansion for Gaussian processes and fields identification. Mechanical Systems and Signal Processing, 187, 109933.

    Article  Google Scholar 

  • Platt, D. (2022). Bayesian estimation of economic simulation models using neural networks. Computational Economics, 59(2), 599–650.

    Article  Google Scholar 

  • Polyzos, E., Samitas, A., & Rubbaniy, G. (2023). The perfect bail‐in: Financing without banks using peer‐to‐peer lending. International Journal of Finance & Economics. https://doi.org/10.1002/ijfe.2838.

    Article  Google Scholar 

  • Polyzos, S., Samitas, A., & Katsaiti, M. S. (2020). Who is unhappy for Brexit? A machine-learning, agent-based study on financial instability. International Review of Financial Analysis, 72, 101590.

    Article  Google Scholar 

  • Poufinas, T., Gogas, P., Papadimitriou, T., & Zaganidis, E. (2023). Machine learning in forecasting motor insurance claims. Risks, 11(9), 164.

    Article  Google Scholar 

  • Ribli, D., Pataki, B. Á., Zorrilla Matilla, J. M., Hsu, D., Haiman, Z., & Csabai, I. (2019). Weak lensing cosmology with convolutional neural networks on noisy data. Monthly Notices of the Royal Astronomical Society, 490(2), 1843–1860.

    Article  Google Scholar 

  • Sabir, Z., Saoud, S., Raja, M. A. Z., Wahab, H. A., & Arbi, A. (2020). Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation. Mathematics and Computers in Simulation, 178, 534–548.

    Article  Google Scholar 

  • Samitas, A., Kampouris, E., & Kenourgios, D. (2020). Machine learning as an early warning system to predict financial crisis. International Review of Financial Analysis, 71, 101507.

    Article  Google Scholar 

  • Samitas, A., Kampouris, E., & Polyzos, S. (2022). Covid-19 pandemic and spillover effects in stock markets: A financial network approach. International Review of Financial Analysis, 80, 102005.

    Article  Google Scholar 

  • Santur, Y. (2023). A novel financial forecasting approach using deep learning framework. Computational Economics, 62, 1341–1392.

    Article  Google Scholar 

  • Sarı, B., Türkeş, S., Güney, H., & Keskinkan, O. (2023). The utilization and modeling of photo-fenton process as a single unit in textile wastewater treatment. CLEAN—Soil, Air, Water, 51(1), 2100328.

    Article  Google Scholar 

  • Sariev, E., & Germano, G. (2020). Bayesian regularized artificial neural networks for the estimation of the probability of default. Quantitative Finance, 20(2), 311–328.

    Article  Google Scholar 

  • Sattar, D., & Braik, M. S. (2023). Metaheuristic methods to identify parameters and orders of fractional-order chaotic systems. Expert Systems with Applications, 228, 120426.

    Article  Google Scholar 

  • Seboka, B. T., Yehualashet, D. E., & Tesfa, G. A. (2023). Artificial intelligence and machine learning based prediction of viral load and CD4 status of people living with HIV (PLWH) on anti-retroviral treatment in Gedeo Zone public hospitals. International Journal of General Medicine, 16, 435–451. https://doi.org/10.2147/IJGM.S397031.

  • Shao, K., Zhou, L., Guo, H., Xu, Z., & Chen, R. (2019, July). Finite-time synchronization and parameter identification of fractional-order Lorenz chaotic system. In 2019 Chinese Control Conference (CCC) (pp. 1120–1124). IEEE.

  • Shi, J., He, K., & Fang, H. (2022). Chaos, Hopf bifurcation and control of a fractional-order delay financial system. Mathematics and Computers in Simulation, 194, 348–364.

    Article  Google Scholar 

  • Shi, W., Chen, Q., Li, N., & Ca, G. (2021). Control and synchronization of hyperchaotic financial system based on computer simulation. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 385–388). IEEE.

  • Shoaib, M., Anwar, N., Ahmad, I., Naz, S., Kiani, A. K., & Raja, M. A. Z. (2023). Neuro-computational intelligence for numerical treatment of multiple delays SEIR model of worms propagation in wireless sensor networks. Biomedical Signal Processing and Control, 84, 104797.

    Article  Google Scholar 

  • Singh, R. K., Singh, A. R., & Yadav, R. K. (2023). A balanced-quantum inspired evolutionary algorithm for solving disassembly line balancing problem. Applied Soft Computing, 132, 109840.

    Article  Google Scholar 

  • Szabó, R., Szklenár, T., & Bódi, A. (2022). Machine learning in present day astrophysics. Europhysics News, 53(2), 22–25.

    Article  Google Scholar 

  • Taleizadeh, A. A., Safaei, A. Z., Bhattacharya, A., & Amjadian, A. (2022). Online peer-to-peer lending platform and supply chain finance decisions and strategies. Annals of Operations Research, 315(1), 397–427.

    Article  Google Scholar 

  • Taloba, A. I. (2022). An artificial neural network mechanism for optimizing the water treatment process and desalination process. Alexandria Engineering Journal, 61(12), 9287–9295.

    Article  Google Scholar 

  • Tang, J., Liu, G., & Pan, Q. (2021). A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA Journal of Automatica Sinica, 8(10), 1627–1643.

    Article  Google Scholar 

  • Umar, M., Raja, M. A. Z., Sabir, Z., Alwabli, A. S., & Shoaib, M. (2020). A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. The European Physical Journal plus, 135(7), 1–23.

    Article  Google Scholar 

  • Verma, S., Sahu, S. P., & Sahu, T. P. (2023). Two-stage hybrid feature selection approach using Levy’s flight based chicken swarm optimization for stock market forecasting. Computational Economics. https://doi.org/10.1007/s10614-023-10400-8

    Article  Google Scholar 

  • Wang, B., Jahanshahi, H., Arıcıoğlu, B., Boru, B., Kacar, S., & Alotaibi, N. D. (2022a). A variable-order fractional neural network: Dynamical properties, Data security application, and synchronization using a novel control algorithm with a finite-time estimator. Journal of the Franklin Institute, 360, 13648–13670.

    Article  Google Scholar 

  • Wang, B., Liu, J., Alassafi, M. O., Alsaadi, F. E., Jahanshahi, H., & Bekiros, S. (2022b). Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system. Chaos, Solitons & Fractals, 154, 111590.

    Article  Google Scholar 

  • Wang, S., He, S., Yousefpour, A., Jahanshahi, H., Repnik, R., & Perc, M. (2020). Chaos and complexity in a fractional-order financial system with time delays. Chaos, Solitons & Fractals, 131, 109521.

    Article  Google Scholar 

  • Wang, Y. L., Jahanshahi, H., Bekiros, S., Bezzina, F., Chu, Y. M., & Aly, A. A. (2021). Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos, Solitons & Fractals, 146, 110881.

    Article  Google Scholar 

  • Wang, Y. S., Jiang, X., & Liu, Z. J. (2016). Bank failure prediction models for the developing and developed countries: Identifying the economic value added for predicting failure. Asian Economic and Financial Review, 6(9), 522–533.

    Article  Google Scholar 

  • Wang, Z., Huang, X., & Shi, G. (2011). Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Computers & Mathematics with Applications, 62(3), 1531–1539.

    Article  Google Scholar 

  • Wen, C., & Yang, J. (2019). Complexity evolution of chaotic financial systems based on fractional calculus. Chaos, Solitons & Fractals, 128, 242–251.

    Article  Google Scholar 

  • Wichmann, F. A., & Geirhos, R. (2023). Are deep neural networks adequate behavioral models of human visual perception? Annual Review of Vision Science, 9, 501–524.

    Article  Google Scholar 

  • Wu, J., Fang, L., Dong, G., & Lin, M. (2023). State of health estimation of lithium-ion battery with improved radial basis function neural network. Energy, 262, 125380.

    Article  Google Scholar 

  • Youscri, D., & Mirjalili, S. (2020). Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems. Engineering Applications of Artificial Intelligence, 92, 103662.

    Article  Google Scholar 

  • Yousefpour, A., & Jahanshahi, H. (2019). Fast disturbance-observer-based robust integral terminal sliding mode control of a hyperchaotic memristor oscillator. The European Physical Journal Special Topics, 228, 2247–2268.

    Article  Google Scholar 

  • Zhang, H., Zang, Z., Zhu, H., Uddin, M. I., & Amin, M. A. (2022). Big data-assisted social media analytics for business model for business decision making system competitive analysis. Information Processing & Management, 59(1), 102762.

    Article  Google Scholar 

  • Zhou, J., Chen, S. L. P., Shi, W. W., & Kanrak, M. (2023). Cruise supply chain risk mitigation strategies: An empirical study in Shanghai, China. Marine Policy, 153, 105600.

    Article  Google Scholar 

  • Zhou, S. S., Jahanshahi, H., Din, Q., Bekiros, S., Alcaraz, R., Alassafi, M. O., & Chu, Y. M. (2021). Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control. Chaos, Solitons & Fractals, 142, 110378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adiqa Kausar Kiani.

Ethics declarations

Conflict of interest

No any conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1927 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, F.A., Fang, KT., Kiani, A.K. et al. Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics. Comput Econ (2024). https://doi.org/10.1007/s10614-024-10587-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-024-10587-4

Keywords

Navigation