Skip to main content
Log in

Option Pricing by the Legendre Wavelets Method

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper presents the numerical solution of the Black–Scholes partial differential equation (PDE) for the evaluation of European call and put options. The proposed method is based on the finite difference and Legendre wavelets aproximation scheme. We derive a matrix structure for the Legendre wavelets integral operator which has been widely used so far. Moreover, in order to use the payoff function, another operational matrix is derived. By the proposed combined method, the solving Black–Scholes PDE problem reduces to those of solving a Sylvester equation. The proposed algorithms show that in compared to literature methods, the proposed method is easy to be implemented and have high execution speed. Furthermore, we prove that the obtained Sylvester equation has a unique solution. In addition, the effect of the finite difference space step size to the computational accuracy is studied. For having suitable solution, the numerical solutions show that there is no need to select very small step size. Also only a small number of basis functions in the Legendre wavelets series is needed. The numerical results demonstrate efficiency and capability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, J., Kang, S., & Kwon, Y. (2010). A Laplace transform finite difference method for the Black–Scholes equation. Mathematical and Computer Modelling, 51(3–4), 247–255.

    Article  Google Scholar 

  • Beylkin, G., Coifman, R., & Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms I. Communications on Pure and Applied Mathematics, 44(2), 141–183.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Brandimarte, P. (2013). Numerical methods in finance and economics: A MATLAB-based introduction. Hoboken: Wiley.

    Google Scholar 

  • Broadie, M., & Yamamoto, Y. (2003). Application of the fast Gauss transform to option pricing. Management Science, 49, 1071–1088.

    Article  Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral methods in fluid dynamics. New York: Springer.

    Book  Google Scholar 

  • Capinski, M., & Zastawniak, T. (2003). Mathematics for finance: An introduction to financial engineering. London: Springer.

    Google Scholar 

  • Carr, P. P., & Madan, D. B. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Chui, C. K. (1997). Wavelets: A mathematical tool for signal analysis. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on Fouriercosine series expansions. SIAM Journal on Scientific Computing, 31, 826–848.

    Article  Google Scholar 

  • Feng, L., & Linetsky, V. (2008). Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: A fast Hilbert transform approach. Mathematical Finance, 18(3), 337–384.

    Article  Google Scholar 

  • Gershgorin, S. A. (1931). Uber die abgrenzung der eigenwerte einer matrix. Bulletin de l’Académie des Sciences de l’URSS, Classe des Sciences Mathématiques et na, 6, 749–754.

    Google Scholar 

  • Goto, Y., Fei, Z., Kan, S., & Kita, E. (2007). Options valuation by using radial basis function approximation. Engineering Analysis with Boundary Elements, 31(10), 836–843.

    Article  Google Scholar 

  • Haven, E., Liu, X., Ma, C., & Shen, L. (2009). Revealing the implied risk-neutral MGF from options: The wavelet method. Journal of Economic Dynamics and Control, 33, 692–709.

    Article  Google Scholar 

  • Hu, J., & Gan, S. (2018). High order method for Black–Scholes PDE. Computers and Mathematics with Applications, 75(7), 2259–2270.

    Article  Google Scholar 

  • Hull, J. C. (2012). Options, futures, and other derivatives (eight). New Jersey: Prentice Hall.

    Google Scholar 

  • Jódar, L., Sevilla-Peris, P., Cortes, J. C., & Sala, R. (2005). A new direct method for solving the Black–Scholes equation. Applied Mathematics Letters, 18(1), 29–32.

    Article  Google Scholar 

  • Kadalbajoo, M. K., Tripathi, L. P., & Kumar, A. (2012). A cubic B-spline collocation method for a numerical solution of the generalized Black–Scholes equation. Mathematical and Computer Modelling, 55(3–4), 1483–1505.

    Article  Google Scholar 

  • Karatzas, I., & Shreve, S. E. (1998). Brownian motion and stochastic calculus. New York: Springer.

    Book  Google Scholar 

  • Lancaster, P., & Tismenetsky, M. (1985). The theory of matrices: With applications. Amsterdam: Elsevier.

    Google Scholar 

  • Lord, R., & Kahl, C. (2007). Optimal Fourier inversion in semi-analytical option pricing. Journal of Computational Finance, 10, 1–30.

    Article  Google Scholar 

  • Liu, X., Cao, A., Ma, C., & Shen, L. (2019). Wavelet-based option pricing: An empirical study. European Journal of Operational Research, 272(3), 1132–1142.

    Article  Google Scholar 

  • Ma, C. (1992). Two essays on equilibrium asset pricing and intertemporal recursive utility. Ph.D. Thesis, Department of Economics, University of Toronto.

  • Ma, C. (2006). Intertemporal recursive utility and an equilibrium asset pricing model in the presence of levy jumps. Journal of Mathematical Economics, 42, 131–160.

    Article  Google Scholar 

  • Maleknejad, K., & Sohrabi, S. (2007). Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Applied Mathematics and Computation, 186(1), 836–843.

    Article  Google Scholar 

  • Matache, A. M., Vonpetersdorff, T., & Schwab, C. (2004). Fast deterministic pricing of options on Lévy-driven assets. ESAIM: Mathematical Modelling and Numerical Analysis, 38(1), 37–71.

    Article  Google Scholar 

  • Matache, A. M., Nitsche, P. A., & Schwab, C. (2005). Wavelet Galerkin pricing of American options on Lévy driven assets. Quantitative Finance, 5, 403–424.

    Article  Google Scholar 

  • Mohammadi, F., & Hosseini, M. M. (2011). A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. Journal of the Franklin Institute, 348(8), 1787–1796.

    Article  Google Scholar 

  • Ortiz-Gracia, L., & Oosterlee, C. W. (2013). Robust pricing of European options with wavelets and the charasteristic function. SIAM Journal on Scientific Computing, 35(5), B1055–B1084.

    Article  Google Scholar 

  • Panini, R., & Srivastav, R. P. (2004). Option pricing with Mellin transforms. Mathematical and Computer Modelling, 40(1–2), 43–56.

    Article  Google Scholar 

  • Pironneau, O., & Hecht, F. (2000). Mesh adaption for the Black and Scholes equations. East West Journal of Numerical Mathematics, 8(1), 25–36.

    Google Scholar 

  • Razzaghi, M., & Yousefi, S. (2000). Legendre wavelets direct method for variational problems. Mathematics and Computers in Simulation, 53(3), 185–192.

    Article  Google Scholar 

  • Razzaghi, M., & Yousefi, S. (2001). The Legendre wavelets operational matrix of integration. International Journal of Systems Science, 32(4), 495–502.

    Article  Google Scholar 

  • Razzaghi, M., & Yousefi, S. (2001). Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Mathematical and Computer Modelling, 34(1–2), 45–54.

    Article  Google Scholar 

  • Razzaghi, M., & Yousefi, S. (2002). Legendre wavelets method for constrained optimal control problems. Mathematical Methods in the Applied Sciences, 25(7), 529–539.

    Article  Google Scholar 

  • Strikwerda, J. C. (1989). Finite difference schemes partial differential equations. Wadsworth & Brooks/Cole.

  • Tagliani, A., & Milev, M. (2013). Laplace transform and finite difference methods for the Black–Scholes equation. Applied Mathematics and Computation, 220, 649–658.

    Article  Google Scholar 

  • Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method. Hoboken: Wiley.

    Google Scholar 

  • Veselić, K. (1979). On real eigenvalues of real tridiagonal matrices. Linear Algebra and Its Applications, 27, 167–171.

    Article  Google Scholar 

  • Wilmott, P., Howison, S., & Dewynne, J. (1993). Option pricing: Mathematical models and computation. Oxford: Oxford Financial Press.

    Google Scholar 

  • Wilmott, P., Howson, S., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives: A student introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wimmer, H. K. (1974). An inertia theorem for tridiagonal matrices and a criterion of Wall on continued fractions. Linear Algebra and Its Applications, 9, 41–44.

    Article  Google Scholar 

  • Yin, F., Song, J., Cao, X., Lu, F. (2013). Couple of the variational iteration method and Legendre wavelets for nonlinear partial differential equations. Journal of Applied Mathematics, 2013.

  • Yin, F., Tian, T., Song, J., & Zhu, M. (2015). Spectral methods using Legendre wavelets for nonlinear Klein Sine–Gordon equations. Journal of Computational and Applied Mathematics, 275, 321–334.

    Article  Google Scholar 

  • Yousefi, S. A. (2006). Legendre wavelets method for solving differential equations of Lane–Emden type. Applied Mathematics and Computation, 181(2), 1417–1422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doostaki, R., Hosseini, M.M. Option Pricing by the Legendre Wavelets Method. Comput Econ 59, 749–773 (2022). https://doi.org/10.1007/s10614-021-10100-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10100-1

Keywords

Navigation