How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems

Abstract

Economic interdependencies have become increasingly present in globalized production, financial and trade systems. While establishing interdependencies among economic agents is crucial for the production of complex products, they may also increase systemic risk due to failure propagation. It is crucial to identify how network connectivity impacts both the emergent production and risk of collapse of economic systems. In this paper we propose a model to study the effects of network structure on the behavior of economic systems by varying the density and centralization of connections among agents. The complexity of production increases with connectivity given the combinatorial explosion of parts and products. Emergent systemic risks arise when interconnections increase vulnerabilities. Our results suggest a universal description of economic collapse given in the emergence of tipping points and phase transitions in the relationship between network structure and risk of individual failure. This relationship seems to follow a sigmoidal form in the case of increasingly denser or centralized networks. The model sheds new light on the relevance of policies for the growth of economic complexity, and highlights the trade-off between increasing the potential production of the system and its robustness to collapse. We discuss the policy implications of intervening in the organization of interconnections and system features, and stress how different network structures and node characteristics suggest different directions in order to promote complex and robust economic systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Acemoglu, D., & Azar, P. D. (2017). Endogenous production networks. Tech. rep., National Bureau of Economic Research.

  2. Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80, 1977–2016.

    Google Scholar 

  3. Albert, R., Jeong, H., & Barabási, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378.

    Google Scholar 

  4. Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1–33.

    Google Scholar 

  5. Baqaee, D. R. (2018). Cascading failures in production networks. Econometrica, 86, 1819–1838.

    Google Scholar 

  6. Bar-Yam, Y. (1997). Dynamics of complex systems (Vol. 213). Reading, MA: Addison-Wesley.

    Google Scholar 

  7. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Google Scholar 

  8. Barabási, A. L., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288(5), 60–69.

    Google Scholar 

  9. Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.

    Google Scholar 

  10. Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2007). Credit chains and bankruptcy propagation in production networks. Journal of Economic Dynamics and Control, 31(6), 2061–2084.

    Google Scholar 

  11. Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2012a). Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. Journal of Economic Dynamics and Control, 36(8), 1121–1141.

    Google Scholar 

  12. Battiston, S., Puliga, M., Kaushik, R., Tasca, P., & Caldarelli, G. (2012b). Debtrank: Too central to fail? Financial networks, the fed and systemic risk. Scientific Reports, 2, 541.

    Google Scholar 

  13. Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2012c). Default cascades: When does risk diversification increase stability? Journal of Financial Stability, 8(3), 138–149.

    Google Scholar 

  14. Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559.

    Google Scholar 

  15. Bimpikis, K., Candogan, O., & Ehsan, S. (2019). Supply disruptions and optimal network structures. Management Science, 65(12), 5504–5517. https://doi.org/10.1287/mnsc.2018.3217.

    Article  Google Scholar 

  16. Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., & Tardos, E. (2011). Network formation in the presence of contagious risk. In Proceedings of the 12th ACM conference on electronic commerce (pp. 1–10). ACM.

  17. Braha, D., & Bar-Yam, Y. (2006). From centrality to temporary fame: Dynamic centrality in complex networks. Complexity, 12(2), 59–63.

    Google Scholar 

  18. Brummitt, C. D., Huremovic, K., Pin, P., Bonds, M. H., & Vega-Redondo, F. (2017). Contagious disruptions and complexity traps in economic development. Nature Human Behaviour, 1, 665.

    Google Scholar 

  19. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025.

    Google Scholar 

  20. Cabrales, A., Gottardi, P., & Vega-Redondo, F. (2017). Risk sharing and contagion in networks. The Review of Financial Studies, 30, 3086–3127.

    Google Scholar 

  21. Caccioli, F., Barucca, P., & Kobayashi, T. (2018). Network models of financial systemic risk: A review. Journal of Computational Social Science, 1(1), 81–114.

    Google Scholar 

  22. Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85(25), 5468.

    Google Scholar 

  23. Carvalho, V. M. (2014). From micro to macro via production networks. Journal of Economic Perspectives, 28, 23–48.

    Google Scholar 

  24. Chérel, G., Cottineau, C., & Reuillon, R. (2015). Beyond corroboration: Strengthening model validation by looking for unexpected patterns. PLOS ONE, 10(9), e0138212. https://doi.org/10.1371/journal.pone.0138212.

    Article  Google Scholar 

  25. Ciccone, A. (2002). Input chains and industrialization. The Review of Economic Studies, 69, 565–587.

    Google Scholar 

  26. Cifuentes, R., Ferrucci, G., & Shin, H. S. (2005). Liquidity risk and contagion. Journal of the European Economic Association, 3(2–3), 556–566.

    Google Scholar 

  27. Crucitti, P., Latora, V., Marchiori, M., & Rapisarda, A. (2003). Efficiency of scale-free networks: Error and attack tolerance. Physica A: Statistical Mechanics and its Applications, 320, 622–642.

    Google Scholar 

  28. Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115–53.

    Google Scholar 

  29. Elliott, M., Golub, B., & Leduc, M. V. (2020). Supply network formation and fragility. arXiv preprint arXiv:2001.03853.

  30. Elliott, M., Hazell, J., & Georg, C.-P. (2018). Systemic risk-shifting in financial networks, available at SSRN 2658249.

  31. Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), 17–60.

    Google Scholar 

  32. Erol, S. (2018). Network hazard and bailouts, available at SSRN 3034406.

  33. Erol, S., & Vohra, R. (2018). Network formation and systemic risk, available at SSRN 2546310.

  34. Fang, H., Jiang, D., Yang, T., Fang, L., Yang, J., Li, W., et al. (2018). Network evolution model for supply chain with manufactures as the core. PloS ONE, 13(1), e0191180. https://doi.org/10.1371/journal.pone.0191180

    Article  Google Scholar 

  35. Gale, D., & Kariv, S. (2009). Trading in networks: A normal form game experiment. Americal Economic Journal: Microeconomics, 1, 114–132.

    Google Scholar 

  36. Harmon, D., Stacey, B., Bar-Yam, Y., & Bar-Yam, Y. (2010). Networks of economic market interdependence and systemic risk. arXiv preprint arXiv:1011.3707.

  37. Harmon, D., de Aguiar, MAM., Chinellato, DD., Braha, D., Epstein, IR., Bar-Yam, Y. (2011). Predicting economic market crises using measures of collective panic. arXiv preprint arXiv:1102.2620.

  38. Hidalgo, C. A., Klinger, B., Barabási, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482–487.

    Google Scholar 

  39. Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack robustness and centrality of complex networks. PLoS ONE, 8(4), e59613.

    Google Scholar 

  40. Jackson, M. O., Rogers, B. W., & Zenou, Y. (2017). The economic consequences of social-network structure. Journal of Economic Literature, 55(1), 49–95.

    Google Scholar 

  41. Jones, C. I. (2011). Intermediate goods and weak links in the theory of economic development. American Economic Journal: Macroeconomics, 3, 1–28.

    Google Scholar 

  42. Jorion, P., & Zhang, G. (2009). Credit contagion from counterparty risk. The Journal of Finance, 64(5), 2053–2087.

    Google Scholar 

  43. Jovanovic, B. (1987). Micro shocks and aggregate risk. The Quarterly Journal of Economics, 102, 395–409.

    Google Scholar 

  44. Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105, 211–248.

    Google Scholar 

  45. Kremer, M. (1993). The O-ring theory of economic development. The Quarterly Journal of Economics, 108, 551–575.

    Google Scholar 

  46. Leduc, M., Poledna, S., & Thurner, S. (2017a). Systemic risk management in financial networks with credit default swaps.

  47. Leduc, M. V., & Thurner, S. (2017b). Incentivizing resilience in financial networks. Journal of Economic Dynamics and Control, 82, 44–66.

    Google Scholar 

  48. Levchenko, A. A. (2007). Institutional quality and international trade. The Review of Economic Studies, 74, 791–819.

    Google Scholar 

  49. Levine, D. (2012). Production chains. Review of Economic Dynamics, 15, 271–282.

    Google Scholar 

  50. Lorenz, J., Battiston, S., & Schweitzer, F. (2009). Systemic risk in a unifying framework for cascading processes on networks. The European Physical Journal B, 71(4), 441.

    Google Scholar 

  51. Marsiglio, S., Bucci, A., La Torre, D., & Liuzzi, L. (2019). Financial contagion and Economic Development: An Epidemiological Approach. Journal of Economic Behavior and Organization.

  52. Pichler, A., Poledna, S., & Thurner, S. (2018). Systemic-risk-efficient asset allocation: Minimization of systemic risk as a network optimization problem. arXiv preprint arXiv:1801.10515.

  53. Reuillon, R., Chuffart, F., Leclaire, M., Faure, T., Dumoulin, N., & Hill, D. R. C. (2010). Declarative task delegation in OpenMOLE. In Proceedings of high performance computing and simulation (HPCS) international conference.

  54. Reuillon, R., Leclaire, M., & Rey-Coyrehourcq, M. (2013). OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models. Future Generation Computer Systems.

  55. Rostek, M., & Weretka, M. (2015). Dynamic thin markets. The Review of Financial Studies, 28, 2946–2992.

    Google Scholar 

  56. Roukny, T., Battiston, S., & Stiglitz, J. E. (2018). Interconnectedness as a source of uncertainty in systemic risk. Journal of Financial Stability, 35, 93–106.

    Google Scholar 

  57. Scheinkman, J. A., & Woodford, M. (1994). Self-organized criticality and economic fluctuations. The American Economic Review Paper and Proceedings, 84, 417–421.

    Google Scholar 

  58. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic networks: The new challenges. Science, 325(5939), 422–425.

    Google Scholar 

  59. Stiglitz, J., & Greenwald, B. (2003). Towards a new paradigm in monetary economics. Cambridge: Cambridge University Press.

    Google Scholar 

  60. Stiglitz, J. E. (2010). Risk and global economic architecture: Why full financial integration may be undesirable. American Economic Review, 100(2), 388–92.

    Google Scholar 

  61. Tang, L., Jing, K., He, J., & Stanley, H. E. (2016). Complex interdependent supply chain networks: Cascading failure and robustness. Physica A: Statistical Mechanics and its Applications, 443, 58–69.

    Google Scholar 

  62. Thurner, S., & Poledna, S. (2013). DebtRank-transparency: Controlling systemic risk in financial networks. Scientific Reports, 3, 1888.

    Google Scholar 

  63. Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/.

  64. Willems, S. P. (2008). Real-world multiechelon supply chains used for inventory optimization. Manufacturing & Service Operations Management, 10(1), 19–23.

    Google Scholar 

  65. Yang, Q., Scoglio, C., & Gruenbacher, D. (2019). Discovery of a phase transition behavior for supply chains against disruptive events, arXiv preprint arXiv:1908.02616.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfredo J. Morales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1015 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vié, A., Morales, A.J. How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems. Comput Econ 57, 1327–1351 (2021). https://doi.org/10.1007/s10614-020-10021-5

Download citation

Keywords

  • Network topology
  • Systemic risk
  • Economic complexity