Skip to main content
Log in

R-Squared-Bootstrapping for Gegenbauer-Type Long Memory

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies \(f\in (0,0.5]\)) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao, W. (2014). Analysis of time series with time-varying frequency behavior and long memory. Ph.D. thesis, Southern Methodist University.

  • Bhansali, R. (1979). A mixed spectrum analysis of the lynx data. Journal of the Royal Statistical Society. Series A (General), 142(2), 199–209.

    Article  Google Scholar 

  • Boubaker, H. (2015). Wavelet estimation of Gegenbauer processes: Simulation and empirical application. Computational Economics, 46(4), 551–574.

    Article  Google Scholar 

  • Boutahar, M., Marimoutou, V., & Nouira, L. (2007). Estimation methods of the long memory parameter: Monte Carlo analysis and application. Journal of Applied Statistics, 34(3), 261–301.

    Article  Google Scholar 

  • Campbell, M., & Walker, A. (1977). A survey of statistical work on the mackenzie river series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis. Journal of the Royal Statistical Society. Series A (general), 140(4), 411–431.

    Article  Google Scholar 

  • Davidson, J., & Rambaccussing, D. (2015). A test of the long memory hypothesis based on self-similarity. Journal of Time Series Econometrics, 7(2), 115–141.

    Article  Google Scholar 

  • Ford, C. R. (1991). The Gegenbauer and Gegenbauer autoregressive moving average long-memory time series models. Ph.D. thesis, Southern Methodist University.

  • Franco, G. C., & Reisen, V. A. (2007). Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes. Physica A: Statistical Mechanics and its Applications, 375(2), 546–562.

    Article  Google Scholar 

  • Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4), 221–238.

    Article  Google Scholar 

  • Giraitis, L., Kokoszka, P., Leipus, R., & Teyssiere, G. (2003a). On the power of R/S-type tests under contiguous and semi-long memory alternatives. Acta Applicandae Mathematica, 78(1), 285–299.

    Article  Google Scholar 

  • Giraitis, L., Kokoszka, P., Leipus, R., & Teyssiere, G. (2003b). Rescaled variance and related tests for long memory in volatility and levels. Journal of Econometrics, 112(2), 265–294.

    Article  Google Scholar 

  • Gray, H. L., Zhang, N.-F., & Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10(3), 233–257.

    Article  Google Scholar 

  • Hurvich, C. M., Deo, R., & Brodsky, J. (1998). The mean squared error of geweke and Porter-Hudak’s estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis, 19(1), 19–46.

    Article  Google Scholar 

  • Hurvich, C. M., & Deo, R. S. (1999). Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. Journal of Time Series Analysis, 20(3), 331–341.

    Article  Google Scholar 

  • Hurvich, C. M., & Ray, B. K. (1995). Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of time Series Analysis, 16(1), 17–41.

    Article  Google Scholar 

  • Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica, 59(5), 1279–1313.

    Article  Google Scholar 

  • Murphy, A., & Izzeldin, M. (2009). Bootstrapping long memory tests: Some Monte Carlo results. Computational Statistics and Data Analysis, 53(6), 2325–2334.

    Article  Google Scholar 

  • Reisen, V. A. (1994). Estimation of the fractional difference parameter in the arima (p, d, q) model using the smoothed periodogram. Journal of Time Series Analysis, 15(3), 335–350.

    Article  Google Scholar 

  • Reisen, V., Abraham, B., & Lopes, S. (2001). Estimation of parameters in ARFIMA processes: A simulation study. Communications in Statistics-Simulation and Computation, 30(4), 787–803.

    Article  Google Scholar 

  • Tong, H. (1977). Some comments on the Canadian lynx data. Journal of the Royal Statistical Society. Series A (General), 140(4), 432–436.

    Article  Google Scholar 

  • Whitcher, B. (2004). Wavelet-based estimation for seasonal long-memory processes. Technometrics, 46(2), 225–238.

    Article  Google Scholar 

  • Woodward, W. A., Bottone, S., & Gray, H. (1997). Improved tests for trend in time series data. Journal of Agricultural, Biological, and Environmental Statistics, 2(4), 403–416.

    Article  Google Scholar 

  • Woodward, W. A., & Gray, H. (1983). A comparison of autoregressive and harmonic component models for the lynx data. Journal of the Royal Statistical Society. Series A (General), 146(1), 71–73.

    Article  Google Scholar 

  • Woodward, W. A., Gray, H. L., & Elliott, A. C. (2017). Applied time series analysis with R (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Xing, Y. (2015). Analysis and model identification of long memory time series. Ph.D. thesis, Southern Methodist University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixun Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Woodward, W.A. R-Squared-Bootstrapping for Gegenbauer-Type Long Memory. Comput Econ 57, 773–790 (2021). https://doi.org/10.1007/s10614-020-09977-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-020-09977-1

Keywords

Navigation