Skip to main content

Optimizing Algorithmic Strategies for Trading Bitcoin


This research tries to establish to what extent three popular algorithmic systems for trading financial assets: the relative strength index, the moving average convergence diversion (MACD) and the pivot reversal (PR), are suitable for Bitcoin trading. Using data about daily Bitcoin prices from the beginning of April 2013 until the end of October 2018, we explored these strategies through particle swarm optimization. Our results demonstrate that the relative strength index produced poorer results than the buy and hold strategy. In contrast, the MACD and PR strategies dramatically outperformed the buy and hold strategy. However, our optimizing process produced even better results.

This is a preview of subscription content, access via your institution.


  1. Round numbers such as $1000 and $6000 per 1 Bitcoin.

  2. State-issued money that is neither convertible by law to any other thing, nor fixed in value in terms of any objective standard.

  3. "pbest" = The setup that achieved the best results in reducing the maximum drawdown and maximizing the percentage of profitable trades, the profit factor and the net profit.

  4. "gbest" = global best identification.

  5. Meaning that the maximum percentage drawdown of the investment equal 3%.

  6. Meaning that 48% of all trades are profitable.

  7. Meaning that the gross profits exceed the gross losses by 20%.

  8. The weights that were chosen for each type of investor are only an example of the possible weights.

  9. Risk-averse investors, risk-neutral investors and risk seekers.

  10. As opposed to Wilder (1978), who suggested 14, 30, and 70 setups.

  11. A long position means buying rather than selling a financial asset.

  12. A short position means selling rather than buying a financial asset.

  13. Support and resistance levels are the lowest and highest prices a financial asset has reached in a specific period of time.

  14. Bull markets refer to upward trends.

  15. Bear markets refer to downward trends.

  16. Swing traders’ investment horizons vary from a few days to a few months.


  • Appel, G. (1979). The moving average convergence divergence method. Great Neck, NY: Signalert.

    Google Scholar 

  • Baek, C., & Elbeck, M. (2014). Bitcoin as an investment or speculative vehicle? A first look. Applied Economics Letters, 22, 30–34.

    Article  Google Scholar 

  • Balcilar, M., Bouri, E., Gupta, R., et al. (2017). Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 64, 74–81.

    Article  Google Scholar 

  • Blau, B. M. (2017). Price dynamics and speculative trading in Bitcoin. Research in Business Finance, 41, 493–499.

    Article  Google Scholar 

  • Brandvold, M., Molnár, P., Vagstad, K., et al. (2015). Price discovery on Bitcoin exchanges. Journal of international Finance Markets Institutions and Money, 36, 18–35.

    Article  Google Scholar 

  • Caporale, M. G., & Plastun, A. (2019). The day of the week effect in the cryptocurrency market. Finance Research Letters, 31, 258–269.

    Article  Google Scholar 

  • Chow, Y. S., Robbins, H., & Siegmund, D. (1971). Great expectations: The theory of optimal stopping. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. Seoul: Congress on Evolutionary Computation.

    Book  Google Scholar 

  • Eberhart, R. C., Simpson, P. K., & Dobbins, R. W. (1996). Computational intelligence PC tools. Boston: Academic Press Professional.

    Google Scholar 

  • Feng, W., Wang, Y., & Zang, Z. (2018). Informed trading in the Bitcoin market. Finance Research Letters, 26, 63–70.

    Article  Google Scholar 

  • Garcia, D., & Schweizer, F. (2015). Social signals and algorithmic trading of Bitcoin. R Soc Open Sci, 2, 9.

    Article  Google Scholar 

  • Goicoechoa, A., Hansen, D. R., & Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. New York: Wiley.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Practical Swarm Optimization. In International conference on neural networks, IV (pp. 1942–1948).

  • Kim, Y. B., Kim, J. G., Kim, W., Im, J. H., Kim, T. H., Kang, S. J., et al. (2016). Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLoS ONE, 11(8), e0161197.

    Article  Google Scholar 

  • Liu, Y., Yang, A., Zhang, J., & Jingjing, Y. (2020). An optimal stopping problem of detecting entry points for trading modeled by geometric Brownian motion. Computational Economics, 55, 827–843.

    Article  Google Scholar 

  • Matta, M., Lunesu, L., & Marchesi, M. (2015). The predictor impact of Web search media on Bitcoin trading volumes. In 7th international joint conference on knowledge discovery, knowledge engineering and knowledge management.

  • Moore, T., & Christin, N. (2013). Beware the middleman: Empirical analysis of Bitcoin-exchange risk. In A. R. Sadeghi (Ed.), Financial cryptography and data security. FC 2013. Lecture Notes in Computer Science (Vol. 7859). Berlin: Springer.

    Google Scholar 

  • Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, 159, 145–148.

    Article  Google Scholar 

  • Wilder, J. W. (1978). New concepts in technical trading systems. Greensboro, NC: Trend Research.

    Google Scholar 

  • Yang, A., Xiang, J., Yang, H., & Jinguan, L. (2018). Sparse bayesian variable selection in probit model for forecasting U.S. recessions using a large set of predictors. Computational Economics, 51(4), 1123–1138.

    Article  Google Scholar 

  • Zadeh, L. A. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transaction on Automatic Control, 8, 59–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gil Cohen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, G. Optimizing Algorithmic Strategies for Trading Bitcoin. Comput Econ 57, 639–654 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: