Proofs and Predictions in Human Problem Solving
Abstract
This paper suggests that Herbert Simon’s concept of proof and predictions, in the solution of problems by human’s, considered as Information Processing Agents subject to boundedly rational behaviour and satisficing objectives, is to be interpreted in terms of constructive mathematics.
Keywords
Herbert Simon Proofs Predictions Constructive mathematics Jordan curve theorem Chess GOJEL Classification
B31 B41 C63 C65References
- Appel, K., & Haken, W. (1978). The four-color problem. In L. A. Steen (Ed.), Mathematics today: Twelve informal essays (pp. 153–180). New York: Springer.CrossRefGoogle Scholar
- Berg, G., Julian, W., Mines, R., & Richman, F. (1975). The constructive Jordan curve theorem. Rocky Mountain Journal of Mathematics, 5(2), 225–236.CrossRefGoogle Scholar
- Bishop, E. (1985). Schizophrenia in contemporary mathematics. In M. Rosenblatt (Ed.), Errett Bishop: Reflections on him and his research (Vol. 39)., Contemporary mathematics Rhode Island: American Mathematical Society, Providence.Google Scholar
- Bosch, R. A., & Smith, J. A. (1998). Separating hyperplanes and the authorship of the disputed federalist papers. The American Mathematical Monthly, 105(7), 601–608.CrossRefGoogle Scholar
- Bourbaki, N. (2004). Theory of sets. Berlin: Springer (This is the edition I have access to).CrossRefGoogle Scholar
- De Groot, A. D. (1946). Het Denken van den Schaker. Amsterdam: North-Holland.Google Scholar
- De Groot, A. D. (1978). Thought and choice in chess (2nd English ed.). The Hague: Mouton Publishers.Google Scholar
- Dowek, G. (2015). Computation, proof, machine—Mathematics enters a new age. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Euwe, M. (1929). Mengentheoretische Betrachtungen über das Schachspiel. Koninklijke Nederlandske Akademie van Wetenschappen, 32, 633–642.Google Scholar
- Feferman, S. (1998). What does logic have to tell us about mathematical proofs? In S. Feferman (Ed.), In the light of logic, chapter 9 (pp. 177–186). Oxford: Oxford University Press.Google Scholar
- Fritsch, R., & Fritsch, G. (1998). The four-color theorem—History, topological foundations and idea of proof. New York: Springer.Google Scholar
- Gonzáles-Velasco, E. A. (1980). On limit cycles of two-dimensional analytic flows. Funkcialaj Ekvacioj, 23, 351–355.Google Scholar
- Hacking, I. (1973). Leibniz and descartes: Proof and eternal truths. In Dawes Hicks lecture on philosophy, Proceedings of the British Academy (Vol. LIX, 16 pages). London: Oxford University Press.Google Scholar
- Hales, T. C. (2007). The Jordan curve theorem, formally and informally. The American Mathematical Monthly, 114(10), 882–894.CrossRefGoogle Scholar
- Hales, T. C. (2013). Mathematics in the age of the Turing machine. In R. G. Downey (Ed.), Turing’s legacy. ASL lecture notes in logic (pp. 253–298). Cambridge: Cambridge University Press.Google Scholar
- Hardy, G. H. (1929). Mathematical proof. Mind, 38(149), 1–25.CrossRefGoogle Scholar
- Hassabis, D. (2017). Artificial intelligence: Chess match of the century. Review of Deep thinking: Where machine intelligence ends and human creativity begins by Gary Kasparov. Nature, 544(7651), 413–414.CrossRefGoogle Scholar
- Hsu, F. H., Anantharaman, T., Campbell, M., & Nowatzyk, A. (1990). A grandmaster chess machine. Scientific American, 263(4), 44–50.CrossRefGoogle Scholar
- Ilyashenko, Y., & Yakovenko, S. (1995). Concerning the Hilbert sixteenth problem, chapter 1. In Y. Ilyashenko & S. Yakovenko (Eds.), Concerning the Hilbert 16th problem (Vol. 165, pp. 1–19)., American Mathematical Society Translations, Series 2 Providence: American Mathematical Society.Google Scholar
- Jones, J. P. (1981). Classification of quantifier prefixes over diophantine equations. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27, 403–410.CrossRefGoogle Scholar
- Kasparov, G. (2010). The chess master and the computer. The New York Review of Books, 57(2), 16–19.Google Scholar
- King, M. (2016). The end of alchemy: Money, banking and the future of the global economy. London: Little, Brown Book Group.Google Scholar
- Knuth, D. E. (1996). Foreward to: A = B, by Petkovšek, Marko, Herbert S. Wilf & Doron Zeilberger, A K Peters, Wellesley, MA.Google Scholar
- Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial Intelligence, 6(4), 293–326.CrossRefGoogle Scholar
- Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery, edited by John Worrall and Elie Zahar, Cambridge University Press, Cambridge.Google Scholar
- Littlewood, J. E. (1957). A mathematician’s miscellany (reprint edition, with ‘minor corrections’). London: Methuen & Co., Ltd.Google Scholar
- MacKenzie, D. (2001). Mechanizing proof. Cambridge, MA: The MIT Press.Google Scholar
- Newell, A., Shaw, J. C., & Simon, H. A. (1958a). Chess-playing programs and the problem of complexity. IBM Journal of Research and Development, 2, 320–335.CrossRefGoogle Scholar
- Newell, A., Shaw, J. C., & Simon, H. A. (1958b). Elements of a theory of human problem solving. Psychological Review, 65(3), 41–56.CrossRefGoogle Scholar
- Newell, A., & Simon, H. A. (1958). Heuristic problem solving: The next advance in operations research. Operations Research, 6(1), 1–10.CrossRefGoogle Scholar
- Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
- Newman, M. H. A. (1951). Elements of the topology of plane sets of points (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
- Polya, G. (1981). Mathematical discovery—On understanding, learning, and teaching problem solving (Combined ed.). New York: Wiley.Google Scholar
- Post, E. L. (1936). Finite combinatory processes-formulation 1. Journal of Symbolic Logic, 1(3), 103–105.CrossRefGoogle Scholar
- Ramsey, F. P. (1978 (1928)). Universals of law and of fact, chapter 6. A, pp. 128–132. In: D. H. Mellor (Ed.), Foundations—Essays in philosophy, logic mathematics and economics by F. P. Ramsey. London: Routledge & Kegan Paul.Google Scholar
- Sieg, W. (2001). Remembrances of Herbert Simon. www.cs.cmu.edu/simon/all.html. Accessed 27 December, 2015.
- Silver, D., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354–359.CrossRefGoogle Scholar
- Simon, H. A. (1954). Bandwagon and underdog effects and the possibility of election predictions. The Public Opinion Quarterly, 18(3), 245–253.CrossRefGoogle Scholar
- Simon, H. A. (1977). Models of discovery—And other topics in the methods of science. Dordrecht: D. Reidel Publishing Company.Google Scholar
- Simon, H. A. (1989). The scientist as problem solver, chapter 14. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon (21st Carnegie-Mellon symposium on cognition) (pp. 375–398). Hillsdale, NJ: Lawrence Earlbaum Associates Inc.Google Scholar
- Simon, H. A. (1996). Models of my life. Cambridge, MA: MIT Press.Google Scholar
- Stone, R., & Brown, A. (Eds.). (1962). A computable model of economic growth, vol. 1, A programme for growth. London: Chapman and Hall.Google Scholar
- Strichartz, R. S. (2000). The way of analysis (Revised ed.). Sudbury, MA: Jones and Bartlett Publishers.Google Scholar
- Sundholm, G. (1993). Questions of proof. Manuscrito – Revista Internacional de Filosofia, Campinas, XVI(2), 47–70.Google Scholar
- Thom, R. (1971). ”Modern” mathematics: An educational and philosophic error? American Scientist, 59(6), 695–699.Google Scholar
- Turing, A. M. (1947). Lecture to the London Mathematical Society on 20 February 1947 (pp. 87–105). In Turing (1992).Google Scholar
- Turing, A. M. (1948). Intelligent machinery (pp. 107–127). In Turing (1992).Google Scholar
- Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.CrossRefGoogle Scholar
- Turing A. M. (1953). Digital computers applied to games (pp. 161–185). In Turing (1992).Google Scholar
- Turing, A. M. (1992). Collected works of A. M. Turing—Mechanical intelligence, D. C. Ince (Ed.). North-Holland, Amsterdam.Google Scholar
- Tymoczco, T. (1979). The four-color problem and its philosophical significance. The Journal of Philosophy, 76(2), 57–83.CrossRefGoogle Scholar
- Whitehead, A. N., & Russell, B. (1927). Principia Mathematica (2nd ed., Vol. 1). Cambridge: Cambridge University Press.Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018