Skip to main content
Log in

On Optimal Pricing Model for Multiple Dealers in a Competitive Market

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, the optimal pricing strategy in Avellande and Stoikov (Quant. Finance 8:217–224, 2008) for a monopolistic dealer is extended to a general situation where multiple dealers are present in a competitive market. The dealers’ trading intensities, their optimal bid and ask prices and therefore their spreads are derived when the dealers are informed the severity of the competition. The effects of various parameters on the bid-ask quotes and profits of the dealers in the competitive market are also discussed. This study gives some insights on the average spread, profits of the dealers in the competitive trading environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Econophysics is an inter-disciplinary research area, which applies theories and methods in Physics to study problems in Economics.

  2. The Cournot competition model is an economic setting for describing a market where firms compete on their amount of output and make decisions independently of each other.

References

  • Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk, 3, 5–39.

    Article  Google Scholar 

  • Avellaneda, M., & Stoikov, S. (2008). High-frequency trading in a limit order book. Quantitative Finance, 8, 217–224.

    Article  Google Scholar 

  • Bayraktar, E., & Ludkovski, M. (2014). Liquidation in limit order books with controlled intensity. Mathematical Finance, 4, 627–650.

    Article  Google Scholar 

  • Bouchaud, J., Mezard, M., & Potters, M. (2002). Statistical properties of stock order books: empirical results and models. Quantitative Finance, 2, 251–256.

    Article  Google Scholar 

  • Brunnermeier, M. K., & Pedersen, L. H. (2005). Predatory trading. The Journal of Finance, 60(4), 1825–1863.

    Article  Google Scholar 

  • Carlin, B. I., Lobo, M. S., & Viswanathan, S. (2007). Episodic liquidity crises: Cooperative and predatory trading. The Journal of Finance, 62(5), 2235–2274.

    Article  Google Scholar 

  • Carmona, R., & Yang Z. (2011). Predatory trading: a game on volatility and liquidity, working paper https://pdfs.semanticscholar.org/954e/67adf64fd38a00a4dafb39183d15d68773ec.pdf.

  • Cartea, Á., & Jaimungal, S. (2015). Risk measures and fine tuning of high frequency trading strategies. Mathematical Finance, 25, 576–611.

    Article  Google Scholar 

  • Cohen, K., Maier, S., Schwartz, R., & Whitcomb, D. (1981). Transaction costs, order placement strategy, and existence of the bid-ask spread. Journal of Political Economy, 89, 287–305.

    Article  Google Scholar 

  • Copeland, T., & Galai, D. (1983). Information effects on the bid-ask spread. The Journal of Finance, 38, 1457–1469.

    Article  Google Scholar 

  • Demsetz, H. (1968). The cost of transacting. Quarterly Journal of Economics, 82, 33–53.

    Article  Google Scholar 

  • Fard, F. A. (2014). Optimal bid-ask spread in limit-order books under regime switching framework. Review of Economics and Finance, 4(4), 33–48.

  • Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. (2006). Institutional investors and stock market volatility. Quarterly Journal of Economics, 121, 461–504.

    Article  Google Scholar 

  • Garman, M. (1976). Market microstructure. Journal of Financial Economics, 3, 257–275.

    Article  Google Scholar 

  • Gopikrishnan, P., Plerou, V., Gabaix, X., & Stanley, H. (2000). Statistical properties of share volume traded in financial markets. Physical Review E, 62, 4493–4469.

    Article  Google Scholar 

  • Guéant, O., Lehalle, C., & Fernandez-Tapia, J. (2012). Optimal portfolio liquidation with limit orders. SIAM Journal on Financial Mathematics, 3, 740–764.

    Article  Google Scholar 

  • Guilbaud, F., & Pham, H. (2011). Optimal high frequency trading with limit and market orders, working paper.

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Holt, C. (2006). Markets, games and strategic behavior. Columbus: Pearson Education.

    Google Scholar 

  • Ho, T., & Stoll, H. (1980). On dealer markets under competition. The Journal of Finance, 35, 259–267.

    Article  Google Scholar 

  • Ho, T., & Stoll, H. (1981). Optimal dealer pricing under transactions and return uncertainty. Journal of Financial Economics, 9, 47–73.

    Article  Google Scholar 

  • Hull, J. (2006). Options, futures, and other derivatives (6th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Hull, J., & White, A. (1990). Pricing interest-rate derivative securities. The Review of Financial Studies, 3, 573–592.

    Article  Google Scholar 

  • Jaimungal, S., & Nourian, M. (2015). Mean-field game strategies for a major-minor agent optimal execution problem. In Social Science Research Network Working Paper Series.

  • Kim, J., & Leung, T. (2016). Impact of risk aversion and belief heterogeneity on trading of defaultable claims. Annals of Operations Research, 243(1–2), 117–146.

    Article  Google Scholar 

  • Maslow, S., & Mills, M. (2001). Price fluctuations from the order book perspective: empirical facts and a simple model. Physica A, 299, 234–246.

    Article  Google Scholar 

  • Moallemi, C. C., Park, B., & Van Roy, B. (2012). Strategic execution in the presence of an uninformed arbitrageur. Journal of Financial Markets, 15(4), 361–391.

    Article  Google Scholar 

  • Potters, M., & Bouchaud, J. (2003). More statistical properties of order books and price impact. Physica A, 324, 133–140.

    Article  Google Scholar 

  • Schied, A., & Zhang, T. (2015). A state-constrained differential game arising in optimal portfolio liquidation. Mathematical Finance, 27, 779–802.

    Article  Google Scholar 

  • Song, N., Ching, W., Siu, T., & Yiu, C. (2012). Optimal submission problem in a limit order book with VaR constraint, The Fifth International Joint Conference on Computational Sciences and Optimization (CSO2012), IEEE Computer Society Proceedings, 266–270.

  • Stoll, H. (1978). The supply of dealer services in securities markets. The Journal of Finance, 33, 1133–1151.

    Article  Google Scholar 

  • Tinic, S. (1972). The economics of liquidity services. Quarterly Journal of Economics, 86, 79–93.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee and the editor for their helpful comments and suggestions. This research work was supported by Research Grants Council of Hong Kong under Grant Number 17301214 and HKU Strategic Research Theme in Information and Computing and National Natural Science Foundation of China Under Grant number 11671158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai-Ki Ching.

Appendix

Appendix

1.1 Appendix A

Proof

Consider first the arrival rate of market order. When \(N=1\),

$$\begin{aligned} \lambda ^a = \lambda ^a(\delta ^a)=A e^{-k\delta ^a}. \end{aligned}$$

By condition (i), when \(N=2\)

$$\begin{aligned} \lambda ^a= \lambda ^a(\delta _1^a,\delta _2^a)=f(\delta _1^a)^{\beta _1}f(\delta _2^a)^{\beta _2} \end{aligned}$$

where \((\beta _1+\beta _2=1)\); when \(\delta _1^a=\delta _2^a=\delta ^a\), this is equivalent to the case when \(N=1\), that is

$$\begin{aligned} f(\delta ^a)^{\beta _1}f(\delta ^a)^{\beta _2}=\lambda ^a(\delta ^a,\delta ^a)=\lambda ^a(\delta ^a)=A e^{-k \delta ^a} \end{aligned}$$

Consequently

$$\begin{aligned} f(\delta ^a)=A e^{-k \delta ^a} \quad \mathrm{and} \quad \lambda ^a=\lambda ^a(\delta _1^a,\delta _2^a)=A e^{-k(\beta _1 \delta _1^a+\beta _2 \delta _2^a)}. \end{aligned}$$

By Condition (i), for any N,

$$\begin{aligned} \lambda ^a=\lambda ^a(\delta _1^a,\ldots ,\delta _n^a)=f(\delta _1^a)^{\beta _1} \ldots f(\delta _N^a)^{\beta _N} \end{aligned}$$

where \(\beta _1+\cdots +\beta _N=1\). When \(\delta _1^a=\cdots =\delta _N^a=\delta ^a\) this situation is equivalent to the case when \(N=1\), i.e.,

$$\begin{aligned} \lambda ^a(\delta ^a,\ldots , \delta ^a)=f(\delta ^a)^{\beta _1} \ldots f(\delta ^a)^{\beta _n}=\lambda ^a(\delta ^a)=A e^{-k \delta ^a} \end{aligned}$$

and \(f(\delta ^a)=A e^{-k \delta ^a}\). Consequently,

$$\begin{aligned} \lambda ^a=\lambda ^a(\delta _1^a,\ldots ,\delta _N^a) =A e^{-k(\beta _1 \delta _1^a +\cdots +\beta _N\delta _N^a)}. \end{aligned}$$

To calculate the arrival rate of buy and sell orders that will reach the dealer, we need the following information:

  1. (i)

    the overall frequency of market orders;

  2. (ii)

    the distribution of market orders’ size;

  3. (iii)

    the temporary impact of a large market order.

From above, we are given one of the estimation of market orders’ frequency. For the other conditions, from a lot of studies, see, for instance (Gabaix et al. 2006; Gopikrishnan et al. 2000; Maslow and Mills 2001, we have some statistical properties of the limit order book, such as, the distribution of the size of market orders Q obeys a power law:

$$\begin{aligned} f^Q(x)\varpropto x^{-1-\alpha } \end{aligned}$$

and the market impact follows a “\(\log \) law” Bouchaud et al. (2002):

$$\begin{aligned} \Delta p \varpropto \frac{1}{K(N)} \ln (Q), \end{aligned}$$

where K(N) is an increasing function in N which satisfies

$$\begin{aligned} K(1)= 0 \quad \mathrm{and} \quad \lim _{N\rightarrow \infty }K(N)=c \end{aligned}$$

with c being a positive constant. This means if the market consists of a single dealer, its order will be executed immediately whenever there is a counterpart arriving at the system; and if there are infinite many participants in the market, then the market will achieve an equilibrium. Here we recall that \(\Delta p = p^Q -s\) where \(p^Q\) is the price of the highest limit order executed in the trade and s is stock mid-price. Aggregating the information of limit order book’s statistical properties, we have

$$\begin{aligned} \begin{array}{lll} \lambda _i^a(\delta _i^a)&{}=&{}\lambda ^a \cdot P(\Delta p>\delta _i^a)\\ &{} \varpropto &{}\lambda ^a \cdot P(\ln (Q)>K(N)\delta _i^a)\\ &{}=&{}\lambda ^a \cdot p(Q>\exp (K(N)\delta _i^a))\\ \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lll} \displaystyle p(Q>\exp (K(N)\delta _i^a))&{} \varpropto &{} \displaystyle \int _{\exp {(K(N)\delta _i^a)}}^{\infty } x^{-1-\alpha }dx\\ &{}=&{}\displaystyle \frac{1}{\alpha }\exp (-\alpha K(N)\delta _i^a). \end{array} \end{aligned}$$

Therefore, for some constant \({\hat{A}}\), we have

$$\begin{aligned} \lambda _i^a(\delta _i^a)= {\hat{A}} \exp (-k(\beta _1\delta _1^a+\cdots +\beta _N\delta _N^a)) \cdot \exp (-\alpha K(N)\delta _i^a). \end{aligned}$$

1.2 Appendix B

Proof

We note that there is no trading in the period \((t_n,T)\),

$$\begin{aligned} E\left[ \exp (-\gamma _i\int _{t_n}^T (\delta _u^{i,a}dN_u^{i,a}+\delta _u^{i,b}dN_u^{i,b}))\Big |\mathcal {F}_{n-1}\right] =1. \end{aligned}$$

Thus the expected exponential utility of Dealer i’s ultimate wealth equals

$$\begin{aligned}&E\left[ -\exp (-\gamma _i(X_T^i+q_T^iS_T))| \mathcal {F}_{n-1}\right] \\&\quad =-\left\{ \lambda _{n-1}^{i,a}\Delta t_{n-1}\exp (-\gamma _i\left( x_{n-1}^i+q_{n-1}^is_{n-1}+\delta _{n-1}^{i,a}\right) \right. \\&\qquad \left. \times \exp \left( \frac{\gamma _i^2\sigma ^2(q_{n-1}^i-1)^2(T-t_{n-1})}{2}\right) \right. \\&\qquad \left. \lambda _{n-1}^{i,b}\Delta t_{n-1}\exp (-\gamma _i(x_{n-1}^i+q_{n-1}^is_{n-1}+\delta _{n-1}^{i,b}))\right. \\&\qquad \left. \times \exp \left( \frac{\gamma _i^2\sigma ^2(q_{n-1}^i+1)^2(T-t_{n-1})}{2}\right) \right. \\&\qquad \left. \times \left[ 1-\lambda _{n-1}^{i,a}\Delta t_{n-1} -\lambda _{n-1}^{i,b}\Delta t_{n-1}\right] \exp (-\gamma _i(x_{n-1}^i+q_{n-1}^is_{n-1}))\right. \\&\qquad \left. \times \exp \left( \frac{\gamma _i^2\sigma ^2(q_{n-1}^i)^2(T-t_{n-1})}{2}\right) \right\} . \end{aligned}$$

By considering the first-order optimality conditions, we can obtain the optimal bid and ask quotes as follows:

$$\begin{aligned} \left\{ \begin{array}{lll} \delta _{n-1}^{i,b}&{}=&{}\displaystyle \frac{1}{\gamma _i}\ln \left( 1+\frac{\gamma _i}{k\beta _i+{\hat{c}}(1-\frac{1}{N})}\right) + \frac{\gamma _i \sigma ^2 (T-t_{n-1})}{2}(2q_{n-1}^i+1)\\ \delta _{n-1}^{i,a}&{}=&{}\displaystyle \frac{1}{\gamma _i}\ln \left( 1+\frac{\gamma _i}{k\beta _i+{\hat{c}}(1-\frac{1}{N})}\right) + \frac{\gamma _i \sigma ^2 (T-t_{n-1})}{2}(-2q_{n-1}^i+1). \end{array} \right. \end{aligned}$$
(71)

Substituting the optimal bid and ask quotes into the expected utility function, one can get the utility for Dealer i. \(\square \)

1.3 Appendix C

Proof

We apply the principle of Dynamic Programming (DP) to Dealer i’s utility function, and obtain

$$\begin{aligned}&V^i\left( s_{n-2},\gamma _i,x_{n-2}^i, q_{n-2}^i,\gamma _j,q_{n-2}^j(j\ne i), t_{n-2}\right) \nonumber \\&\quad =\displaystyle \max _{\delta _{n-2}^{i,a},\delta _{n-2}^{i,b},\delta _{n-1}^{i,a},\delta _{n-1}^{i,b}} E\left[ -\exp (-\gamma _i(X_T^i+q_T^iS_T))\Big |\mathcal {F}_{n-2}\right] \nonumber \\&\quad =\displaystyle \max _{\delta _{n-2}^{i,a},\delta _{n-2}^{i,b},\delta _{n-1}^{i,a},\delta _{n-1}^{i,b}} E\left[ E[-\exp (-\gamma _i(X_T^i+q_T^iS_T))\big |\mathcal {F}_{n-1}]\Big |\mathcal {F}_{n-2}\right] \nonumber \\&\quad =\displaystyle \max _{\delta _{n-2}^{i,a},\delta _{n-2}^{i,b}}-\exp (-\gamma _i(x_{n-2}^i+q_{n-2}^is_{n-2})) \nonumber \\&\qquad \times \Big \{\lambda _{n-2}^{i,a}\Delta t_{n-2}\Big (\exp (-\gamma _i\delta _{n-2}^{i,a})\exp \left( \frac{\gamma _i^2\sigma ^2 (q_{n-2}^i-1)^2\Delta t_{n-2}}{2}\right) g_{n-1}^i(q_{n-2}^i-1,t_{n-1})\Big ) \nonumber \\&\qquad +\, \lambda _{n-2}^{i,b}\Delta t_{n-2}\Big (\exp (-\gamma _i\delta _{n-2}^{i,b})\exp \left( \frac{\gamma _i^2\sigma ^2 (q_{n-2}^i+1)^2\Delta t_{n-2}}{2}\right) g_{n-1}^i(q_{n-2}^i+1,t_{n-1})\Big ) \nonumber \\&\qquad + \left[ 1-\lambda _{n-2}^{i,a}\Delta t_{n-2}-\lambda _{n-2}^{i,b}\Delta t_{n-2}\right] \Big (\exp \left( \frac{\gamma _i^2\sigma ^2 (q_{n-2}^i)^2\Delta t_{n-2}}{2}\right) g_{n-1}^i(q_{n-2}^i,t_{n-1})\Big )\Big \}\nonumber \\&\quad =\displaystyle \max _{\delta _{n-2}^{i,a},\delta _{n-2}^{i,b}}-\exp (-\gamma _i(x_{n-2}^i+q_{n-2}^is_{n-2})) \exp \left( \frac{\gamma _i^2\sigma ^2 (q_{n-2}^i)^2(T-t_{n-2})}{2}\right) h_{n-1}^i \nonumber \\&\qquad \times \Big \{\lambda _{n-2}^{i,a}\Delta t_{n-2}\exp (-\gamma _i\delta _{n-2}^{i,a})\exp \left( \frac{\gamma _i^2\sigma ^2 (-2q_{n-2}^i+1)(T-t_{n-2})}{2}\right) \nonumber \\&\qquad +\,\lambda _{n-2}^{i,b}\Delta t_{n-2}\exp (-\gamma _i\delta _{n-2}^{i,b})\exp \left( \frac{\gamma _i^2\sigma ^2 (-2q_{n-2}^i+1)(T-t_{n-2})}{2}\right) \nonumber \\&\qquad +\,1-\lambda _{n-2}^{i,a}\Delta t_{n-2}-\lambda _{n-2}^{i,b}\Delta t_{n-2}\Big \}. \end{aligned}$$
(72)

By considering the first order optimality conditions, we obtain Dealer i’s optimal ask quote as follows:

$$\begin{aligned} \begin{array}{lll} \delta _{n-2}^{i,a}= & {} \displaystyle \frac{1}{\gamma _i}\ln \left( 1+\frac{\gamma _i}{k\beta _i+{\hat{c}}(1-\frac{1}{N})}\right) + \frac{\gamma _i \sigma ^2 (T-t_{n-2})}{2}(-2q_{n-2}^i+1). \end{array} \end{aligned}$$
(73)

Similarly, we can give his bid quote

$$\begin{aligned} \begin{array}{lll} \delta _{n-2}^{i,b}= & {} \displaystyle \frac{1}{\gamma _i}\ln \left( 1+\frac{\gamma _i}{k\beta _i+{\hat{c}}(1-\frac{1}{N})}\right) + \frac{\gamma _i \sigma ^2 (T-t_{n-2})}{2}(2q_{n-2}^i+1). \end{array} \end{aligned}$$
(74)

Substituting the optimal bid and ask quotes into the utility function, one can obtain Dealer i’s utility function:

$$\begin{aligned} \begin{array}{lll} &{}&{}V^i\left( s_{n-2},\gamma _i, x_{n-2}^i q_{n-2}^i,\gamma _j,q_{n-2}^j(j\ne i), t_{n-2}\right) \\ &{}&{}\quad =\displaystyle -\exp (-\gamma _i(x_{n-2}^i+q_{n-2}^is_{n-2})) \exp \left( \frac{\gamma _i^2\sigma ^2(q_{n-2}^i)^2(T-t_{n-2})}{2}\right) \\ &{}&{}\qquad \times \left[ 1-\frac{\gamma _i\Delta t_{n-2}}{k\beta _i+{\hat{c}}(1-\frac{1}{N})}\left( \lambda _{n-2}^{i,a}+ \lambda _{n-2}^{i,b}\right) \right] h_{n-1}^i. \end{array} \end{aligned}$$
(75)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, QQ., Gu, JW., Ching, WK. et al. On Optimal Pricing Model for Multiple Dealers in a Competitive Market. Comput Econ 53, 397–431 (2019). https://doi.org/10.1007/s10614-017-9749-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9749-6

Keywords

Navigation