Skip to main content
Log in

Solving Deterministic and Stochastic Equilibrium Problems via Augmented Walrasian

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

We described a method to solve deterministic and stochastic Walras equilibrium models based on associating with the given problem a bifunction whose maxinf-points turn out to be equilibrium points. The numerical procedure relies on an augmentation of this bifunction. Convergence of the proposed procedure is proved by relying on the relevant lopsided convergence. In the two-stage versions of our models, deterministic and stochastic, we are mostly concerned with models that equip the agents with a mechanism to transfer goods from one time period to the next, possibly simply savings, but also allows for the transformation of goods via production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the equilibrium case \(\epsilon =0\) is included.

  2. http://www.math.ucdavis.edu/~jderide/AugWal/AugWal.html.

References

  • Arrow, K., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica, 22, 265–290.

    Article  Google Scholar 

  • Aubin, J., & Ekeland, I. (2006). Applied nonlinear analysis. Mineola: Dover Publications.

    Google Scholar 

  • Bagh, A. (2002). Augmenting the Walrasian, oral presentation. Davis: University of California.

    Google Scholar 

  • Birge, J., & Louveaux, F. (2011). Introduction to stochastic programming. Berlin: Springer.

    Book  Google Scholar 

  • Brown, D., & Kubler, F. (2008). Computational aspects of general equilibrium theory: Refutable theories of value. Berlin: Springer.

    Google Scholar 

  • Brown, D., Demarzo, P., & Eaves, C. (1996). Computing equilibria when asset markets are incomplete. Econometrica, 64(1), 1–27.

    Article  Google Scholar 

  • Debreu, G. (1959). Theory of value. New York: Wiley.

    Google Scholar 

  • Eaves, C. (Ed.). (2011). Homotopy methods and global convergence. Berlin: Springer.

    Google Scholar 

  • Guo, Z., Deride, J., & Fan, Y. (2016). Infrastructure planning for fast charging stations in a competitive market. Transportation Research Part C: Emerging Technologies, 68, 215–227.

    Article  Google Scholar 

  • Gurobi Optimization I (2014) Gurobi optimizer reference manual. http://www.gurobi.com

  • Hart, W., Laird, C., Watson, J. P., & Woodruff, D. (2012). Pyomo—optimization modeling in python. Berlin: Springer.

    Book  Google Scholar 

  • Jofré, A., & Wets, R. J. B. (2002). Continuity properties of Walras equilibrium points. Annals of Operations Research, 114, 229–243.

    Article  Google Scholar 

  • Jofré, A., & Wets, R. J. B. (2009). Variational convergence of bivariate functions: Lopsided convergence. Mathemathical Programming B, 116, 275–295.

    Article  Google Scholar 

  • Jofré, A., & Wets, R. J. B. (2014). Variational convergence of bifunctions: Motivating applications. SIAM Journal on Optimization, 24(4), 1952–1979.

    Article  Google Scholar 

  • Jofré, A., Rockafellar, R. T., & Wets, R. J. B. (2017). General economic equilibrium with financial markets and retainability. Economic Theory, 63(1), 309–345.

    Article  Google Scholar 

  • Judd, K. (1998). Numerical methods in economics. Cambridge: MIT Press.

    Google Scholar 

  • Kirman, A. (1998). Elements of general equilibrium analysis. New York: Wiley.

    Google Scholar 

  • Magill, M., & Quinzii, M. (2002). Theory of incomplete markets. Cambridge: The MIT Press. (No. 0262632543 in MIT Press Books).

    Google Scholar 

  • Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge: University of Cambridge. (Cambridge NA Report NA2009/06).

    Google Scholar 

  • Rockafellar, R. T., & Wets, R. J. B. (1991). Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16, 119–147.

    Article  Google Scholar 

  • Rockafellar, R. T., & Wets, R. J. B. (1998). Variational analysis, grundlehren der mathematischen wissenschafte (Vol. 317). Berlin: Springer. (3rd printing 2009).

    Google Scholar 

  • Saigal, R. (1983). A homotopy for solving large, sparse and structured fixed point problems. Mathematics of Operations Research, 8, 557–578.

    Article  Google Scholar 

  • Scarf, H., & Hansen, T. (1973). The computation of economic equilibria. New Haven: Yale University Press.

    Google Scholar 

  • Wächter, A., & Biegler, L. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25–57.

    Article  Google Scholar 

  • Wets RJB (1989) The aggregation principle in scenario analysis and stochastic optimization. In: Wallace S (ed.), Algorithms and model formulations in mathematical programming (vol. 51, pp. 91–113). Berlin: Springer, NATO ASI.

Download references

Acknowledgements

This material is based upon work by Julio Deride and Roger Wets supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant numbers W911NF-10-1-0246 and W911NF-12-1-0273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Deride.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deride, J., Jofré, A. & Wets, R.JB. Solving Deterministic and Stochastic Equilibrium Problems via Augmented Walrasian. Comput Econ 53, 315–342 (2019). https://doi.org/10.1007/s10614-017-9733-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9733-1

Keywords

Navigation