Barndorff-Nielsen, O. E., & Shephard, N. (2001). Normal modified stable processes. Economics Series Working Papers from University of Oxford, Department of Economics (p. 72).
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19, 465–474.
Article
Google Scholar
Bowley, A. L. (1920). Elements of statistics (4th ed.). London: P.S. King and Sons, Ltd.
Carrasco, M., & Florens, J.-P. (2000). Generalization of GMM to a continuum of moment conditions. Econometric Theory, 16, 797–834.
Article
Google Scholar
Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39, 841–862.
Article
Google Scholar
Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.
Google Scholar
Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating density forecasts. International Economic Review, 39, 863–883.
Article
Google Scholar
Dominicy, Y., & Veredas, D. (2013). The method of simulated quantiles. Journal of Econometrics, 172, 235–247.
Article
Google Scholar
Fallahgoul, H. A., Kim, Y. S., & Fabozzi, F. J. (2016). Elliptical tempered stable distribution. Quantitative Finance, 16, 1069–1087.
Gajda, J., & Wyłomańska, A. (2013). Tempered stable Lévy motion driven by stable subordinator. Physica A: Statistical Mechanics and its Applications, 392, 3168–3176.
Article
Google Scholar
Goode, J., Kim, Y. S., & Fabozzi, F. J. (2015). Full versus quasi mle for arma-garch models with infinitely divisible innovations. Applied Economics, 48, 5147–5158.
Article
Google Scholar
Hinkley, D. V. (1975). On power transformations to symmetry. Biometrika, 62, 101–111.
Article
Google Scholar
Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F. J., & Mignacca, D. (2012). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operational Research, 201, 325–343.
Article
Google Scholar
Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010). Computing VaR and AVaR in infinitely divisible distributions. Probability and Mathematical Statistics, 30, 223–245.
Google Scholar
Kim, Y. S., Rachev, S. T., Bianchi, M. L., Mitov, I., & Fabozzi, F. J. (2011). Time series analysis for financial market meltdowns. Journal of Banking & Finance, 35, 1879–1891.
Article
Google Scholar
Kim, Y. S., Rachev, S. T., Chung, D. M., & Bianchi, M. L. (2009). Modified tempered stable distribution, GARCH models and option pricing. Probability and Mathematical Statistics, 29, 91–117.
Google Scholar
Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights to-wards the Gaussian stochastic process. Physica Review E, 52, 1197–1199.
Article
Google Scholar
Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 6, 6–24.
Google Scholar
Meerschaert, M. M., Roy, P., & Shao, Q. (2009). Parameter estimation for tempered power law distributions. In Communications in statistics–theory and methods.
Menn, C., & Rachev, S. T. (2006). Calibrated FFT-based density approximations for \(\alpha \)-stable distributions. Computational Statistics & Data Analysis, 50, 1891–1904.
Article
Google Scholar
Parzen, E. (1959). Statistical inference on time series by Hilbert space methods, technical report 23. Stanford: Applied Mathematics and Statistics Laboratory.
Google Scholar
Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. Hoboken, NJ: Wiley.
Rosenblatt, M. (1952). Remarks on multivariate transformation. The Annals of Mathematical Statistics, 23, 470–472.
Article
Google Scholar
Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis, 12. Berlin: Springer.
Zhao, Z., & Xiao, Z. (2014). Efficient regressions via optimally combining quantile information. Econometric Theory, 30, 1272–1314.
Article
Google Scholar