Computational Economics

, Volume 52, Issue 1, pp 227–252 | Cite as

An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory

  • Chao Gong
  • Chunhui Xu
  • Ji Wang


Cumulative prospect theory (CPT) has become one of the most popular approaches for evaluating the behavior of decision makers under conditions of uncertainty. Substantial experimental evidence suggests that human behavior may significantly deviate from the traditional expected utility maximization framework when faced with uncertainty. The problem of portfolio selection should be revised when the investor’s preference is for CPT instead of expected utility theory. However, because of the complexity of the CPT function, little research has investigated the portfolio choice problem based on CPT. In this paper, we present an operational model for portfolio selection under CPT, and propose a real-coded genetic algorithm (RCGA) to solve the problem of portfolio choice. To overcome the limitations of RCGA and improve its performance, we introduce an adaptive method and propose a new selection operator. Computational results show that the proposed method is a rapid, effective, and stable genetic algorithm.


Portfolio choice Cumulative prospect theory Adaptive real coded genetic algorithms Multivariate normal distribution 


  1. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole Americaine. Econometrica, 21(21), 503–546.CrossRefGoogle Scholar
  2. Bäck, T.(1996). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. Evolutionary Computation, 1994. In proceedings of the first IEEE conference on IEEE world congress on computational intelligence, (Vol. 1, pp. 57–62). IEEE.Google Scholar
  3. Back, T., Hoffmeister, F., & Schwefel, H. P. (1994). A survey of evolution strategies. In International conference on genetic algorithms, (pp. 2–9).Google Scholar
  4. Baixauli-Soler, J. S., Alfaro-Cid, E., & Fernandez-Blanco, M. O. (2011). Mean-var portfolio selection under real constraints. Computational Economics, 37(2), 113–131.CrossRefGoogle Scholar
  5. Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of an international conference on genetic algorithms and their applications (pp. 101–111). New Jersey: Hillsdale.Google Scholar
  6. Barberis, N., & Huang, M. (2008). Stocks as lotteries: The implications of probability weighting for security prices. The American Economic Review, 98(5), 2066–2100.CrossRefGoogle Scholar
  7. Barberis, N., Huang, M., & Santos, T. (1999). Prospect theory and asset prices. Quarterly Journal of Economics, 116(1), 1–53.CrossRefGoogle Scholar
  8. Barberis, N., Huang, M., & Thaler, R. H. (2006). Individual preferences, monetary gambles, and stock market participation: A case for narrow framing. American Economic Review, 96(4), 1069–1090.CrossRefGoogle Scholar
  9. Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assessment. The Journal of Economic Perspectives, 27(1), 173–195.CrossRefGoogle Scholar
  10. Baskar, S., Subbaraj, P., & Chidambaram, P. (2001). Application of genetic algorithms to unit commitment problem. Journal of Institute of Engineering (India), 81, 195–199.Google Scholar
  11. Baskar, S., Subbaraj, P., Rao, M., & Tamilselvi, S. (2003). Genetic algorithms solution to generator maintenance scheduling with modified genetic operators. Generation, Transmission and Distribution, IEE Proceedings, IET, 150, 56–60.CrossRefGoogle Scholar
  12. Baskar, S., Subbaraj, P., & Rao, M. (2004). Performance of real coded genetic algorithms with new genetic operators. Journal of The Institution of Engineers (India), 85, 124–128.Google Scholar
  13. Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. Quarterly Journal of Economics, 110(1), 73–92.CrossRefGoogle Scholar
  14. Bernard, C., & Ghossoub, M. (2010). Static portfolio choice under cumulative prospect theory. Mathematics and Financial Economics, 2(4), 277–306.CrossRefGoogle Scholar
  15. Birnbaum, M. H., & Chavez, A. (1997). Tests of theories of decision making: Violations of branch independence and distribution independence. Organizational Behavior and Human Decision Processes, 71(2), 161–194.CrossRefGoogle Scholar
  16. Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46(11), 1485–1496.CrossRefGoogle Scholar
  17. Blondel, S. (2002). Testing theories of choice under risk: Estimation of individual functionals. Journal of Risk and Uncertainty, 24(3), 251–265.CrossRefGoogle Scholar
  18. Blum, S., Puisa, R., Riedel, J., & Wintermantel, M. (2001). Adaptive mutation strategies for evolutionary algorithms. In The annual conference: EVEN at Weimarer Optimierungsund Stochastiktage, (Vol. 2).Google Scholar
  19. Camerer, C. F., & Ho, T. H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8(2), 167–196.CrossRefGoogle Scholar
  20. Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 27(13), 1271–1302.CrossRefGoogle Scholar
  21. Chelouah, R., & Siarry, P. (2003). Genetic and neldermead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. European Journal of Operational Research, 148(2), 335–348.CrossRefGoogle Scholar
  22. Coelho, L. A. G. (2014). Portfolio selection optimization under cumulative prospect theorya parameter sensibility analysis. In CEFAGE-UE working Papers.Google Scholar
  23. Crow, J. F., & Kimura, M. (1979). Efficiency of truncation selection. Proceedings of the National Academy of Sciences of the United States of America, 76(1), 396–399.CrossRefGoogle Scholar
  24. Deb, K., & Beyer, H. G. (1999). Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In conference on genetic and evolutionary computation (pp. 172–179). Morgan Kaufmann Publishers Inc.Google Scholar
  25. Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26, 30–45.Google Scholar
  26. Deep, K., & Thakur, M. (2007). A new mutation operator for real coded genetic algorithms. Applied Mathematics and Computation, 193(1), 211–230.CrossRefGoogle Scholar
  27. Ellsberg, D. (2000). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643–669.CrossRefGoogle Scholar
  28. Fennema, H., & Assen, M. V. (1998). Measuring the utility of losses by means of the tradeoff method. Journal of Risk and Uncertainty, 17(3), 277–296.CrossRefGoogle Scholar
  29. Giorgi, E. D., Hens, T., & Mayer, J. (2007). Computational aspects of prospect theory with asset pricing applications. Computational Economics, 29(3), 267–281.CrossRefGoogle Scholar
  30. Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co. Inc.Google Scholar
  31. Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93.Google Scholar
  32. Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38(1), 129–166.CrossRefGoogle Scholar
  33. Grüne, L., & Semmler, W. (2008). Asset pricing with loss aversion. Journal of Economic Dynamics & Control, 32(10), 3253–3274.CrossRefGoogle Scholar
  34. Hancock, P. J. B. (1994). An empirical comparison of selection methods in evolutionary algorithms. Lecture Notes in Computer Science, 865(15), 80–94.CrossRefGoogle Scholar
  35. He, X. D., & Zhou, X. Y. (2011). Portfolio choice under cumulative prospect theory: An analytical treatment. Management Science, 57(2), 315–331.CrossRefGoogle Scholar
  36. Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review, 12(4), 265–319.CrossRefGoogle Scholar
  37. Hoffmeister, F., & Bäck, T. (1991). Parallel problem solving from nature., Genetic algorithms and evolution strategies: Similarities and differences Berlin: Springer.Google Scholar
  38. Hogg, R. V., & Craig, A. T. (1995). Introduction into mathematical statistics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  39. Holand, J. H. (1975). Adaption in natural and artificial systems. Control and Artificial Intelligence University of Michigan Press, 6(2), 126–137.Google Scholar
  40. Hrstka, O., & Kučerová, A. (2004). Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Advances in Engineering Software, 35(35), 237–246.CrossRefGoogle Scholar
  41. Huimei, Y. (2000). Adaptive crossover rate and mutation rate in genetic algorithms. Journal of Capital Normal University (Natural Science Edition), 21(3), 14–20.Google Scholar
  42. Ingersoll, J. (2008). Non-monotonicity of the Tversky–Kahneman probability-weighting function: A cautionary note. European Financial Management, 14(3), 385–390.CrossRefGoogle Scholar
  43. Jin, H., & Yu Zhou, X. (2008). Behavioral portfolio selection in continuous time. Mathematical Finance, 18(3), 385–426.CrossRefGoogle Scholar
  44. Kaelo, P., & Ali, M. M. (2007). Integrated crossover rules in real coded genetic algorithms. European Journal of Operational Research, 176(1), 60–76.CrossRefGoogle Scholar
  45. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  46. Levy, H., & Levy, M. (2004). Prospect theory and mean–variance analysis. Review of Financial Studies, 17(4), 1015–1041.CrossRefGoogle Scholar
  47. Lin, W. Y., Lee, W. Y., & Hong, T. P. (2003). Adapting crossover and mutation rates in genetic algorithms. Journal of Information Science and Engineering, 19(5), 889–903.Google Scholar
  48. Luce, R. D. (1991). Rank- and sign-dependent linear utility models for binary gambles. Journal of Risk and Uncertainty, 53(1), 75–100.Google Scholar
  49. Luce, R. D. (2001). Reduction invariance and prelec’s weighting functions. Journal of Mathematical Psychology, 45(1), 167–179.CrossRefGoogle Scholar
  50. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.Google Scholar
  51. Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs. Computational Statistics and Data Analysis, 24(3), 372–373.Google Scholar
  52. Pirvu, T. A., & Schulze, K. (2012). Multi-stock portfolio optimization under prospect theory. Mathematics and Financial Economics, 6(4), 337–362.CrossRefGoogle Scholar
  53. Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3(4), 323–343.CrossRefGoogle Scholar
  54. Ranković, V., Drenovak, M., Stojanović, B., Kalinić, Z., & Arsovski, Z. (2014). The mean-value at risk static portfolio optimization using genetic algorithm. Computer Science and Information Systems, 11(1), 89–109.CrossRefGoogle Scholar
  55. Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1), 96–101.CrossRefGoogle Scholar
  56. Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59.CrossRefGoogle Scholar
  57. Schmidt, U., & Zank, H. (2008). Risk aversion in cumulative prospect theory. Management Science, 54(1), 208–216.CrossRefGoogle Scholar
  58. Srinivas, M., & Patnaik, L. M. (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems Man and Cybernetics, 24(4), 656–667.CrossRefGoogle Scholar
  59. Stracca, L. (2002). The optimal allocation of risks under prospect theory. Social Science Electronic Publishing, 27(2), 697–711.Google Scholar
  60. Subbaraj, P., Rengaraj, R., & Salivahanan, S. (2009). Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm. Applied Energy, 86(6), 915–921.CrossRefGoogle Scholar
  61. Subbaraj, P., Rengaraj, R., & Salivahanan, S. (2011). Enhancement of self-adaptive real-coded genetic algorithm using taguchi method for economic dispatch problem. Applied Soft Computing, 11(1), 83–92.CrossRefGoogle Scholar
  62. Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior and Organization, 1(1), 39–60.CrossRefGoogle Scholar
  63. Thierens, D., & Goldberg, D. (1994a) Convergence models of genetic algorithm selection schemes. In Proceedings parallel problem solving from nature-PPSN III, International conference on evolutionary computation. The third conference on parallel problem solving from nature, Jerusalem, Israel, Oct 9–14, 1994, (Vol. 866, pp. 119–129), DBLP.Google Scholar
  64. Thierens, D., & Goldberg, D. (1994b) Elitist recombination: An integrated selection recombination GA. Evolutionary computation, 1994. In Proceedings of the first IEEE conference on IEEE world congress on computational intelligence. (Vol.1, pp. 508–512 ). IEEE Xplore.Google Scholar
  65. Tsao, C. Y. (2010). Portfolio selection based on the mean–var efficient frontier. Quantitative Finance, 10(8), 931–945.CrossRefGoogle Scholar
  66. Tsutsui, S., & Goldberg, D. E. (2001). Search space boundary extension method in real-coded genetic algorithms. Information Sciences, 133(3), 229–247.CrossRefGoogle Scholar
  67. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.CrossRefGoogle Scholar
  68. Whitley, D. (1989). The GENITOR, algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. International conference on genetic algorithms. San Francisco: Morgan Kaufmann Publishers Inc.Google Scholar
  69. Wenbo, Hu, & Kercheval, Alec N. (2010). Portfolio optimization for student t and skewed t returns. Quantitative Finance, 10(10), 91–105.Google Scholar
  70. Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science, 42(12), 1676–1690.CrossRefGoogle Scholar
  71. Yang, X. (2006). Improving portfolio efficiency: A genetic algorithm approach. Computational Economics, 28(1), 1–14.CrossRefGoogle Scholar
  72. Yun, Y., Gen, M., & Seo, S. (2003). Various hybrid methods based on genetic algorithm with fuzzy logic controller. Journal of Intelligent Manufacturing, 14(3), 401–419.CrossRefGoogle Scholar
  73. Zhang, J., Chung, S. H., & Lo, W. L. (2007). Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. Evolutionary Computation IEEE Transactions on, 11(3), 326–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Chiba Institute of TechnologyChibaJapan

Personalised recommendations