Advertisement

Computational Economics

, Volume 51, Issue 3, pp 607–635 | Cite as

Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks

  • Gang-Jin WangEmail author
  • Chi Xie
  • H. Eugene Stanley
Article

Abstract

We construct a Pearson correlation-based network and a partial correlation-based network, i.e., two minimum spanning trees (MST-Pearson and MST-Partial), to analyze the correlation structure and evolution of world stock markets. We propose a new method for constructing the MST-Partial. We use daily price indices of 57 stock markets from 2005 to 2014 and find (i) that the distributions of the Pearson correlation coefficient and the partial correlation coefficient differ completely, which implies that the correlation between pairs of stock markets is greatly affected by other markets, and (ii) that both MSTs are scale-free networks and that the MST-Pearson network is more compact than the MST-Partial. Depending on the geographical locations of the stock markets, two large clusters (i.e., European and Asia-Pacific) are formed in the MST-Pearson, but in the MST-Partial the European cluster splits into two subgroups bridged by the American cluster with the USA at its center. We also find (iii) that the centrality structure indicates that outcomes obtained from the MST-Partial are more reasonable and useful than those from the MST-Pearson, e.g., in the MST-Partial, markets of the USA, Germany, and Japan clearly serve as hubs or connectors in world stock markets, (iv) that during the 2008 financial crisis the time-varying topological measures of the two MSTs formed a valley, implying that during a crisis stock markets are tightly correlated and information (e.g., about price fluctuations) is transmitted quickly, and (v) that the presence of multi-step survival ratios indicates that network stability decreases as step length increases. From these findings we conclude that the MST-Partial is an effective new tool for use by international investors and hedge-fund operators.

Keywords

Stock markets Correlation structure Network Minimum spanning tree Evolution 

Notes

Acknowledgments

We are grateful to the Editor (Hans M. Amman) and four anonymous referees for their insightful comments and suggestions. The work was supported by the National Natural Science Foundation of China (Grant Nos. 71501066 and 71373072), the China Scholarship Council (Grant No. 201506135022), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130161110031), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 71521061).

References

  1. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.CrossRefGoogle Scholar
  2. Aste, T., Shaw, W., & Di Matteo, T. (2010). Correlation structure and dynamics in volatile markets. New Journal of Physics, 12(8), 085009.CrossRefGoogle Scholar
  3. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.CrossRefGoogle Scholar
  4. Birch, J., Pantelous, A. A., & Soramäki, K. (2016). Analysis of correlation based networks representing DAX 30 stock price returns. Computational Economics, 47(4), 501–525.CrossRefGoogle Scholar
  5. Boginski, V., Butenko, S., & Pardalos, P. M. (2005). Statistical analysis of financial networks. Computational Statistics & Data Analysis, 48(2), 431–443.CrossRefGoogle Scholar
  6. Bonanno, G., Vandewalle, N., & Mantegna, R. N. (2000). Taxonomy of stock market indices. Physical Review E, 62(6), R7615–R7618.CrossRefGoogle Scholar
  7. Brida, J., & Risso, W. (2010). Dynamics and structure of the 30 largest North American companies. Computational Economics, 35(1), 85–99.CrossRefGoogle Scholar
  8. Buccheri, G., Marmi, S., & Mantegna, R. N. (2013). Evolution of correlation structure of industrial indices of U.S. equity markets. Physical Review E, 88(1), 012806.CrossRefGoogle Scholar
  9. Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206–1228.CrossRefGoogle Scholar
  10. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.CrossRefGoogle Scholar
  11. Coelho, R., Gilmore, C. G., Lucey, B., Richmond, P., & Hutzler, S. (2007). The evolution of interdependence in world equity markets-evidence from minimum spanning trees. Physica A, 376, 455–466.CrossRefGoogle Scholar
  12. Dai, Y. H., Xie, W. J., Jiang, Z. Q., Jiang, G. J., & Zhou, W. X. (2016). Correlation structure and principal components in the global crude oil market. Empirical Economics,. doi: 10.1007/s00181-015-1057-1.Google Scholar
  13. Drożdż, S., Grümmer, F., Ruf, F., & Speth, J. (2001). Towards identifying the world stock market cross-correlations: Dax versus Dow Jones. Physica A, 294(1–2), 226–234.Google Scholar
  14. Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1994). Forecasting international equity correlations. Financial Analysts Journal, 50(6), 32–45.CrossRefGoogle Scholar
  15. Eryiǧit, M., & Eryiǧit, R. (2009). Network structure of cross-correlations among the world market indices. Physica A, 388(17), 3551–3562.CrossRefGoogle Scholar
  16. Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance, 57(5), 2223–2261.CrossRefGoogle Scholar
  17. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.CrossRefGoogle Scholar
  18. Gilmore, C. G., Lucey, B. M., & Boscia, M. (2008). An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees. Physica A, 387(25), 6319–6329.CrossRefGoogle Scholar
  19. Gilmore, C. G., Lucey, B. M., & Boscia, M. W. (2010). Comovements in government bond markets: A minimum spanning tree analysis. Physica A, 389(21), 4875–4886.CrossRefGoogle Scholar
  20. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.CrossRefGoogle Scholar
  21. Górski, A. Z., Drożdż, S., & Kwapień, J. (2008). Scale free effects in world currency exchange network. The European Physical Journal B, 66(1), 91–96.CrossRefGoogle Scholar
  22. Jiang, Z. Q., & Zhou, W. X. (2010). Complex stock trading network among investors. Physica A, 389(21), 4929–4941.CrossRefGoogle Scholar
  23. Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., & Stanley, H. E. (2015). Partial correlation analysis: Applications for financial markets. Quantitative Finance, 15(4), 569–578.CrossRefGoogle Scholar
  24. Kenett, D. Y., Preis, T., Gur-Gershgoren, G., & Ben-Jacob, E. (2012a). Dependency network and node influence: Application to the study of financial markets. International Journal of Bifurcation and Chaos, 22(7), 1250181.CrossRefGoogle Scholar
  25. Kenett, D. Y., Raddant, M., Zatlavi, L., Lux, T., & Ben-Jacob, E. (2012b). Correlations and dependencies in the global financial village. International Journal of Modern Physics: Conference Series, 16(1), 13–28.Google Scholar
  26. Kenett, D. Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R. N., & Ben-Jacob, E. (2010). Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PLoS ONE, 5(12), e15032.CrossRefGoogle Scholar
  27. Kim, H. J., Lee, Y., Kahng, B., & Kim, Im. (2002). Weighted scale-free network in financial correlations. Journal of the Physical Society of Japan, 71(9), 2133–2136.CrossRefGoogle Scholar
  28. Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48–50.CrossRefGoogle Scholar
  29. Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3–4), 115–226.CrossRefGoogle Scholar
  30. Kwapień, J., Gworek, S., Drożdż, S., & Górski, A. (2009). Analysis of a network structure of the foreign currency exchange market. Journal of Economic Interaction and Coordination, 4(1), 55–72.CrossRefGoogle Scholar
  31. Laloux, L., Cizeau, P., Bouchaud, J. P., & Potters, M. (1999). Noise dressing of financial correlation matrices. Physical Review Letters, 83(7), 1467–1470.CrossRefGoogle Scholar
  32. Li, M. X., Jiang, Z. Q., Xie, W. J., Xiong, X., Zhang, W., & Zhou, W. X. (2015). Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant. Physica A, 419, 575–584.CrossRefGoogle Scholar
  33. Liu, X. F., & Tse, C. K. (2012). A complex network perspective of world stock markets: Synchronization and volatility. International Journal of Bifurcation and Chaos, 22(6), 1250142.CrossRefGoogle Scholar
  34. Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B, 11(1), 193–197.CrossRefGoogle Scholar
  35. Mantegna, R. N., & Stanley, H. E. (2000). An introduction to econophysics: Correlations and complexity in finance. Cambirdge: Cambirdge University Press.Google Scholar
  36. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.Google Scholar
  37. Matesanz, D., & Ortega, G. J. (2014). Network analysis of exchange data: Interdependence drives crisis contagion. Quality & Quantity, 48(4), 1835–1851.CrossRefGoogle Scholar
  38. Meng, H., Xie, W. J., Jiang, Z. Q., Podobnik, B., Zhou, W. X., & Stanley, H. E. (2014). Systemic risk and spatiotemporal dynamics of the US housing market. Scientific Reports, 4, 3655.CrossRefGoogle Scholar
  39. Meng, H., Xie, W. J., & Zhou, W. X. (2015). Club convergence of house prices: Evidence from China’s ten key cities. International Journal of Modern Physics B, 29(24), 1550181.CrossRefGoogle Scholar
  40. Onnela, J. P., Chakraborti, A., Kaski, K., Kertesz, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 056110.CrossRefGoogle Scholar
  41. Onnela, J. P., Kaski, K., & Kertész, J. (2004). Clustering and information in correlation based financial networks. The European Physical Journal B, 38(2), 353–362.CrossRefGoogle Scholar
  42. Papenbrock, J., & Schwendner, P. (2015). Handling risk-on/risk-off dynamics with correlation regimes and correlation networks. Financial Markets and Portfolio Management, 29(2), 125–147.CrossRefGoogle Scholar
  43. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., & Stanley, H. E. (1999). Universal and nonuniversal properties of cross correlations in financial time series. Physical Review Letters, 83(7), 1471–1474.CrossRefGoogle Scholar
  44. Podobnik, B., Jiang, Z. Q., Zhou, W. X., & Stanley, H. E. (2011). Statistical tests for power-law cross-correlated processes. Physical Review E, 84(6), 066118.CrossRefGoogle Scholar
  45. Qian, X. Y., Liu, Y. M., Jiang, Z. Q., Podobnik, B., Zhou, W. X., & Stanley, H. E. (2015). Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces. Physical Review E, 91(6), 062816.CrossRefGoogle Scholar
  46. Rizvi, S. A. R., Arshad, S., & Alam, N. (2015). Crises and contagion in Asia Pacific—Islamic v/s conventional markets. Pacific-Basin Finance Journal, 34, 315–326.CrossRefGoogle Scholar
  47. Sandoval, L, Jr. (2014). To lag or not to lag? How to compare indices of stock markets that operate on different times. Physica A, 403, 227–243.CrossRefGoogle Scholar
  48. Sensoy, A., & Tabak, B. M. (2014). Dynamic spanning trees in stock market networks: The case of Asia-Pacific. Physica A, 414, 387–402.CrossRefGoogle Scholar
  49. Sheng, H., & Tu, A. H. (2000). A study of cointegration and variance decomposition among national equity indices before and during the period of the Asian financial crisis. Journal of Multinational Financial Management, 10(3–4), 345–365.CrossRefGoogle Scholar
  50. Solnik, B., Boucrelle, C., & Le Fur, Y. (1996). International market correlation and volatility. Financial Analysts Journal, 52(5), 17–34.CrossRefGoogle Scholar
  51. Song, D. M., Jiang, Z. Q., & Zhou, W. X. (2009). Statistical properties of world investment networks. Physica A, 388(12), 2450–2460.CrossRefGoogle Scholar
  52. Song, D. M., Tumminello, M., Zhou, W. X., & Mantegna, R. N. (2011). Evolution of worldwide stock markets, correlation structure, and correlation-based graphs. Physical Review E, 84(2), 026108.CrossRefGoogle Scholar
  53. Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of stock market networks: The case of Brazil. Physica A, 389(16), 3240–3249.CrossRefGoogle Scholar
  54. Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32(1), 235–258.CrossRefGoogle Scholar
  55. Tse, C. K., Liu, J., & Lau, F. C. M. (2010). A network perspective of the stock market. Journal of Empirical Finance, 17(4), 659–667.CrossRefGoogle Scholar
  56. Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10421–10426.CrossRefGoogle Scholar
  57. Vandewalle, N., Brisbois, F., & Tordoir, X. (2001). Non-random topology of stock markets. Quantitative Finance, 1(3), 372–374.CrossRefGoogle Scholar
  58. Vizgunov, A., Goldengorin, B., Kalyagin, V., Koldanov, A., Koldanov, P., & Pardalos, P. M. (2014). Network approach for the Russian stock market. Computational Management Science, 11(1–2), 45–55.CrossRefGoogle Scholar
  59. Wang, D., Podobnik, B., Horvatic, D., & Stanley, H. E. (2011). Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices. Physical Review E, 83(4), 046121.CrossRefGoogle Scholar
  60. Wang, G. J., & Xie, C. (2015). Correlation structure and dynamics of international real estate securities markets: A network perspective. Physica A, 424, 176–193.CrossRefGoogle Scholar
  61. Wang, G. J., & Xie, C. (2016). Tail dependence structure of the foreign exchange market: A network view. Expert Systems with Applications, 46, 164–179.CrossRefGoogle Scholar
  62. Wang, G. J., Xie, C., Chen, S., Yang, J. J., & Yang, M. Y. (2013a). Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient. Physica A, 392(17), 3715–3730.CrossRefGoogle Scholar
  63. Wang, G. J., Xie, C., Chen, Y. J., & Chen, S. (2013b). Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree. Entropy, 15(5), 1643–1662.CrossRefGoogle Scholar
  64. Wang, G. J., Xie, C., Han, F., & Sun, B. (2012). Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree. Physica A, 391(16), 4136–4146.CrossRefGoogle Scholar
  65. Wang, G. J., Xie, C., Zhang, P., Han, F., & Chen, S. (2014). Dynamics of foreign exchange networks: A time-varying copula approach. Discrete Dynamics in Nature and Society, 2014, 170921.Google Scholar
  66. Zhou, W. X., Mu, G. H., & Kertész, J. (2012). Random matrix approach to the dynamics of stock inventory variations. New Journal of Physics, 14, 093025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Business SchoolHunan UniversityChangshaChina
  2. 2.Center of Finance and Investment ManagementHunan UniversityChangshaChina
  3. 3.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations