Albrecher, H., Mayer, P., Schoutens, W., & Tistaert, J. (2007). The little Heston trap. London: Wilmott Magazine.
Google Scholar
Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 167–241.
Article
Google Scholar
Barone Adesi, G., Engle, R. F., & Mancini, L. (2008). A GARCH option pricing model with filtered historical simulation. Review of Financial Studies, 21(3), 1223–1258.
Article
Google Scholar
Bhar, R. (2010). Stochastic filtering with applications in finance. Singapore: World Scientific.
Book
Google Scholar
Bianchi, M. L., & Fabozzi, F. J. (2015). Investigating the performance of non-Gaussian stochastic intensity models in the calibration of credit default swap spread. Computational Economics, 46(2), 243–273.
Article
Google Scholar
Bianchi, M.L., Rachev, S.T., Fabozzi, F.J. (2016). Tempered stable Ornstein-Uhlenbeck processes: A practical view. Communications in Statistics: Simulation and Computation.
Brigo, D., & Mercurio, F. (2006). Interest rate models: Theory and practice: With smile, inflation, and credit. New York: Springer.
Google Scholar
Carr, P., & Madan, D. (1999). Option valuation using the fast fourier transform. Journal of Computational Finance, 2(4), 61–73.
Article
Google Scholar
Centanni, S., Ongaro, A. (2011). Computing option values by pricing kernel with a stochastic volatility model. Working paper.
Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing option anomalies with a variance-dependent pricing kernel. Review of Financial Studies, 26(8), 1963–2006.
Article
Google Scholar
Christoffersen, P., Jacobs, K., & Mimouni, K. (2010). Volatility dynamics for the S&P500: Evidence from realized volatility, daily returns, and option prices. Review of Financial Studies, 23(8), 3141–3189.
Article
Google Scholar
Ciccone, E., Giordano, L., Grasso, R. (2011). Why are derivative warrants more expensive than options? The Italian case. Discussion papers, Consob, n. 2.
Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman & Hall.
Google Scholar
Cui, C., Zhang, K. (2011). Equity implied volatility surface. Quantitative Research and Development, Bloomberg, Version 3.5.
Douc, R., Cappé, O. (2005). Comparison of resampling schemes for particle filtering. In Proceedings of the IEEE 4th international symposium on image and signal processing and analysis (pp. 64–69).
Duan, J. C. (1995). The GARCH option pricing model. Mathematical Finance, 5(1), 13–32.
Article
Google Scholar
Duan, J. C., & Simonato, J. G. (1998). Empirical martingale simulation for asset prices. Management Science, 44(9), 1218–1233.
Article
Google Scholar
Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749–1778.
Article
Google Scholar
Fang, F., Jönsson, H., Oosterlee, K., & Schoutens, W. (2010). Fast valuation and calibration of credit default swaps under Lévy dynamics. Journal of Computational Finance, 14(2), 1–30.
Article
Google Scholar
Geman, H., Madan, D. B., & Yor, M. (2001). Time changes for Lévy processes. Mathematical Finance, 11(1), 79–96.
Article
Google Scholar
Geman, H., Madan, D. B., & Yor, M. (2002). Stochastic volatility, jumps and hidden time changes. Finance and Stochastics, 6(1), 63–90.
Article
Google Scholar
Guillaume, F. (2012). Sato two-factor models for multivariate option pricing. Journal of Computational Finance, 15(4), 159–192.
Article
Google Scholar
Guillaume, F., & Schoutens, W. (2012). Calibration risk: Illustrating the impact of calibration risk under the Heston model. Review of Derivatives Research, 15(1), 57–79.
Article
Google Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.
Article
Google Scholar
Heston, S. L., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13(3), 585–625.
Article
Google Scholar
Hull, J. (2002). Options, futures and other derivatives (5th ed.). Upper Saddle River: Prentice Hall.
Google Scholar
Hurst, S. R., Platen, E., & Rachev, S. T. (1997). Subordinated market index models: A comparison. Asia-Pacific Financial Markets, 4(2), 97–124.
Google Scholar
Hurst, S. R., Platen, E., & Rachev, S. T. (1999). Option pricing for a logstable asset price model. Mathematical and Computer Modelling, 29(10), 105–119.
Article
Google Scholar
Kim, Y. S., & Lee, J. H. (2007). The relative entropy in CGMY processes and its applications to finance. Mathematical Methods of Operations Research, 66(2), 327–338.
Article
Google Scholar
Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010). Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking & Finance, 34(9), 2096–2109.
Article
Google Scholar
Lando, D. (2004). Credit risk modeling: Theory and applications. Princeton: Princeton University Press.
Google Scholar
Lehar, A., Scheicher, M., & Schittenkopf, C. (2002). Garch vs. stochastic volatility: Option pricing and risk management. Journal of Banking & Finance, 26(2), 323–345.
Article
Google Scholar
Li, J. (2011). Sequential bayesian analysis of time-changed infinite activity derivatives pricing models. Journal of Business and Economic Statistics, 29(4), 468–480.
Article
Google Scholar
Lopes, H. F., & Tsay, R. S. (2010). Particle filters and Bayesian inference in financial econometrics. Journal of Forecasting, 30, 168–209.
Article
Google Scholar
Malik, S., Pitt, M.K. (2011). Modelling stochastic volatility with leverage and jumps: A simulated maximum likelihood approach via particle filtering. Banque de France, Working paper No. 318.
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 394–419.
Article
Google Scholar
Muzzioli, S. (2011). Corridor implied volatility and the variance risk premium in the Italian market. Working paper.
Nicolato, E., & Venardos, E. (2003). Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type. Mathematical Finance, 13(4), 445–466.
Article
Google Scholar
Rachev, S., & Mittnik, S. (2000). Stable Paretian models in finance. New York: Wiley.
Google Scholar
Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. New York: Wiley.
Book
Google Scholar
Sato, K. I. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.
Google Scholar
Scherer, M., Rachev, S. T., Kim, Y. S., & Fabozzi, F. J. (2012). Approximation of skewed and leptokurtic return distributions. Applied Financial Economics, 22(16), 1305–1316.
Article
Google Scholar
Schoutens, W. (2003). Lévy processes in finance: Pricing financial derivatives. New York: Wiley.
Book
Google Scholar
Tassinari, G. L., & Bianchi, M. L. (2014). Calibrating the smile with multivariate time-changed Brownian motion and the Esscher transform. International Journal of Theoretical and Applied Finance, 17(4).
Wu, L. (2008). Modeling financial security returns using Lévy processes. In J. R. Birge & V. Linetsky (Eds.), Handbooks in operations research and management science, volume 15, financial engineering (pp. 117–162). Amsterdam: Elsevier.
Google Scholar
Yu, C. L., Li, H., & Wells, M. T. (2011). MCMC estimation of Lévy jumps models using stock and option prices. Mathematical Finance, 21(3), 383–422.
Article
Google Scholar