Computational Economics

, Volume 50, Issue 1, pp 161–172 | Cite as

Finite Sample Critical Values of the Generalized KPSS Stationarity Test

  • Peter Sephton


Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115, 1992) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502, 2004).


Response surface Stationarity test Monte Carlo 


  1. Cappuccio, N., & Lubian, D. (2010). The fragility of the KPSS stationarity test. Statistical Methods and Applications, 19, 237–253.CrossRefGoogle Scholar
  2. Carrion-i-Silvestre, J. L., Sansó-i-Roselló, A., & Ortuño, M. (2001). Unit root and stationarity tests’ wedding. Economics Letters, 70, 1–8.CrossRefGoogle Scholar
  3. Carrion-i-Silvestre, J. L., & Sanso, A. (2007). The KPSS test with two structural breaks. Spanish Economic Review, 9, 105–127.CrossRefGoogle Scholar
  4. Charemza, W., & Syczewska, E. (1998). Joint application of the Dickey–Fuller and KPSS tests. Economics Letters, 61(1), 17–21.CrossRefGoogle Scholar
  5. Cheung, Y. W., & Lai, K. S. (1995). Lag order and critical values of the augmented Dickey–Fuller test. Journal of Business and Economic Statistics, 13(3), 277–280.Google Scholar
  6. Choi, I. (2009). Improving empirical size of the KPSS test of stationarity. Journal of Economic Theory and Econometrics, 20, 1–14.Google Scholar
  7. Cragg, J. G. (1983). More efficient estimation in the presence of heteroskedasticity of unknown form. Econometrica, 51, 751–763.CrossRefGoogle Scholar
  8. Gulesserian, S., & Kejriwal, M. (2014). On the power of bootstrap tests for stationarity: A Monte Carlo comparison. Empirical Economics, 46, 973–998.CrossRefGoogle Scholar
  9. Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. Econometrics Journal, 3(2), 148–161.CrossRefGoogle Scholar
  10. Harvey, D., & Mills, T. (2004). Tests for stationarity in series with endogenously determined structural change. Oxford Bulletin of Economics and Statistics, 55(5), 863–894.CrossRefGoogle Scholar
  11. Hobijn, B., Franses, P., & Ooms, M. (2004). Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 58(4), 483–502.CrossRefGoogle Scholar
  12. Keblowski, P., & Welfe, A. (2004). The ADF-KPSS test of the joint confirmation hypothesis of an autoregressive root. Economics Letters, 85, 257–263.CrossRefGoogle Scholar
  13. Kwiatkowski, D., Phillips, P., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 91–115.CrossRefGoogle Scholar
  14. Lee, J., & Lee, Y. I. (2012). Size improvement of the KPSS test using sieve bootstraps. Economics Letters, 116, 483–486.CrossRefGoogle Scholar
  15. MacKinnon, J. (1991). Critical values for cointegration tests. In R. F. Engle & C. W. Granger (Eds.), Long-run economic relationships: Readings in cointegration (pp. 267–276). Oxford: Oxford University Press.Google Scholar
  16. MacKinnon, J. (1994). Approximate asymptotic distribution functions for unit-root and cointegration tests. Journal of Business and Economic Statistics, 12, 167–176.Google Scholar
  17. MacKinnon, J., & Nielsen, M. (2014). Numerical distribution functions of fractional unit root and cointegration tests. Journal of Applied Econometrics, 29, 161–171.CrossRefGoogle Scholar
  18. Nayeba, S., & Tanaka, K. (1988). Asymptotic theory of a test for the constancy of regression coefficients against the random walk alternative. The Annals of Statistics, 16(1), 218–235.CrossRefGoogle Scholar
  19. Palm, F., Smeekes, S., & Urbain, J. (2008). Bootstrap unit root tests: Comparisons and extensions. Journal of Time Series Analysis, 29, 371–401.CrossRefGoogle Scholar
  20. Patton, A., Politis, D., & White, H. (2009). Correction to automatic block-length selection for the dependent bootstrap by D. Politis and H. White. Econometric Reviews, 28, 372–375.CrossRefGoogle Scholar
  21. Politis, D., & Romano, J. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89, 1303–1313.CrossRefGoogle Scholar
  22. Sephton, P. (1995). Response surface estimates of the KPSS stationarity test. Economics Letters, 47, 255–261.CrossRefGoogle Scholar
  23. Sephton, P. (2008a). On the finite sample size and power of the generalized KPSS test in the presence of level breaks. Applied Economics Letters, 15, 833–843.CrossRefGoogle Scholar
  24. Sephton, P. (2008b). Critical values of the augmented fractional dickey fuller test. Empirical Economics, 35, 437–450.CrossRefGoogle Scholar
  25. Verbeek, M. (2012). A guide to modern econometrics (4th ed.). West Sussex: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of BusinessQueen’s UniversityKingstonCanada

Personalised recommendations