Computational Economics

, Volume 48, Issue 2, pp 307–316 | Cite as

Is It Possible to Visualise Any Stock Flow Consistent Model as a Directed Acyclic Graph?

  • Peter G. Fennell
  • David J. P. O’Sullivan
  • Antoine Godin
  • Stephen Kinsella


Yes it is. We rigorously demonstrate the equivalence of any stock flow consistent (SFC) model to a directed acyclic graph (DAG) using condensation graphs. The equivalence between stock flow models and DAGs is useful both for visualising large-scale macroeconomic models of this type and for inferring causality within these models. We developed a new package to build and simulate any SFC model and generate the corresponding DAGs, and we provide an example of this package using a well known model from the literature.


Stock flow consistent models Directed graphs Macroeconomic modeling 

JEL Classification

E01 E12 E17 



We thank Dan Neilsen and Oliver Burrows for useful comments on an earlier draft. Kinsella gratefully acknowledges the support of the Institute for New Economic Thinking under grant number INO1300030.


  1. Bessler, D. A., Yang, J., & Wongcharupan, M. (2003). Price dynamics in the international wheat market: Modeling with error correction and directed acyclic graphs. Journal of Regional Science, 43(1), 1–33.CrossRefGoogle Scholar
  2. Caverzasi, E., & Godin, A. (2015). Post-Keynesian stock-flow-consistent modelling: A survey. Cambridge Journal of Economics, 39(1), 157–187.CrossRefGoogle Scholar
  3. Dos Santos, C. H., & Zezza, G. (2008). A simplified,‘benchmark’, stock-flow consistent post-Keynesian growth model. Metroeconomica, 59(3), 441–478.CrossRefGoogle Scholar
  4. Godley, W. (1999). Money and credit in a Keynesian model of income determination. Cambridge Journal of Economics, 23(2), 393–411.CrossRefGoogle Scholar
  5. Godley, W., & Lavoie, M. (2007). Monetary economics an integrated approach to credit, money, income, production and wealth. Basingstoke: Palgrave-Macmillan.Google Scholar
  6. Heer, B., & Maussner, A. (2009). Dynamic general equilibrium modelling. Berlin: Springer.CrossRefGoogle Scholar
  7. Hoover, K. D. (2001). Causality in macroeconomics. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  8. Hopcroft, J. E. (1983). Data structures and algorithms. Boston: Pearson Education.Google Scholar
  9. Lauritzen, S. L. (2001). Causal inference from graphical models. In Complex stochastic systems (pp. 63–107).Google Scholar
  10. Moneta, A., Entner, D., Hoyer, P. O., & Coad, A. (2013). Causal inference by independent component analysis: Theory and applications*. Oxford Bulletin of Economics and Statistics, 75(5), 705–730.CrossRefGoogle Scholar
  11. Morgan, S. L., & Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research. New York: Cambridge University Press.CrossRefGoogle Scholar
  12. Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Pearl, J. (2000). Causality: Models, reasoning and inference (Vol. 29). Cambridge: Cambridge University Press.Google Scholar
  14. Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–160.CrossRefGoogle Scholar
  16. Tobin, J. (1982). Money and finance in the macroeconomic process. Journal of Money, Credit and Banking, 14(2), 171–204.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Peter G. Fennell
    • 1
  • David J. P. O’Sullivan
    • 1
  • Antoine Godin
    • 2
  • Stephen Kinsella
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of LimerickLimerickIreland
  2. 2.Department of EconomicsUniversity of LimerickLimerickIreland

Personalised recommendations