Computational Economics

, Volume 47, Issue 4, pp 527–549 | Cite as

Optimal Prediction Periods for New and Old Volatility Indexes in USA and German Markets

Article
  • 279 Downloads

Abstract

In 1993, the Chicago Board of Options Exchange (CBOE) introduced the VXO, a volatility index based on implied volatilities on S&P 100 index. In 2003, the CBOE changed their volatility index design and introduced the VIX in order to enhance its economic significance and to facilitate hedging. In this paper, using data from the USA and the German stock markets, we compare the forecasting capability of the volatility indexes with that of historical volatility and conditional volatility models. Following this analysis, we have studied whether it may be the case that volatility indexes forecast the realized volatilities more accurately for a different period to 30 (or 45) days, attempting to answer the question: what time horizon is the informational content of volatility indexes best adjusted for? The optimal prediction period of each volatility index (VXO, VIX, VDAX and V1X) in terms of coefficient of determination is analysed. The results identify a difference between the observed optimal forecasting period and the theoretical one. This could be explained from different perspectives such as the index’s design, investor cognitive bias or overreaction.

Keywords

VIX VDAX Forecasting Realized volatility  Maturity 

References

  1. Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes standard volatility models do provide accurate forecasts. International Economic Review, 39, 885–905.CrossRefGoogle Scholar
  2. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics, 61, 43–76.CrossRefGoogle Scholar
  3. Bird, R., & Yeung, D. (2012). How do investors react under uncertainty? Pacific-Basin Finance Journal, 20(2), 310–327.CrossRefGoogle Scholar
  4. Blair, B. J., Poon, S. H., & Taylor, S. J. (2001). Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high-frequency index returns. Journal of Econometrics, 105, 5–26.CrossRefGoogle Scholar
  5. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRefGoogle Scholar
  6. Brenner, M., & Galai, D. (1989). New financial instruments for hedging changes in volatility. Financial Analysts Journal, 45(4), 61–65.CrossRefGoogle Scholar
  7. Canina, L., & Figlewski, S. (1993). The informational content of implied volatility. Review of Financial Studies, 6(3), 659–681.CrossRefGoogle Scholar
  8. Carr, P., & Wu, L. (2006). A tale of two indexes. Journal of Derivatives, 13(3), 13–29.CrossRefGoogle Scholar
  9. Christensen, B. J., & Prabhala, N. R. (1998). The relation between implied and realized volatility. Journal of Financial Economics, 50, 125–150.CrossRefGoogle Scholar
  10. Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing option anomalies with a variance-dependent pricing kernel. The Review of Financial Studies, 26(8), 1963–2006.CrossRefGoogle Scholar
  11. Chung, S. L., Tsai, W. C., Wang, Y. H., & Weng, P. S. (2011). The information content of the S&P 500 index and VIX options on the dynamics of the S&P 500 index. Journal of Futures Markets, 31(12), 1170–1201.CrossRefGoogle Scholar
  12. Cox, J. C., & Rubinstein, M. (1985). Options markets (Vol. 340). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  13. Day, F., & Lewis, C. M. (1992). Stock market volatility and the information content of stock index options. Journal of Econometrics, 52(1–2), 267–287.CrossRefGoogle Scholar
  14. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–263.Google Scholar
  15. Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns. The Journal of Finance, 58(3), 1269–1300.CrossRefGoogle Scholar
  16. Fleming, J., Ostdiek, B., & Whaley, R. E. (1995). Predicting stock market volatility: A new measure. The Journal of Futures Markets, 15(3), 265–302.CrossRefGoogle Scholar
  17. Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1802.CrossRefGoogle Scholar
  18. Harvey, D. I., Leybourne, S. J., & Newbold, P. (1998). Tests for forecast encompassing. Journal of Business & Economic Statistics, 16(2), 254–259.Google Scholar
  19. Lehnert, T., Lin, Y. & Martelin, N. (2013). Steis’s Overreaction Puzzle: Option Anomaly or Perfectly Rational Behavior?. LSF Research Working Paper Series, n\(^{o}\) (pp. 13–11).Google Scholar
  20. Luo, X., & Zhang, J. E. (2012). The term structure of VIX. Journal of Futures Market, 32(12), 1092–1123.CrossRefGoogle Scholar
  21. Newey, W. K., & West, K. D. (1987). A simple, positive semi-definitive, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703–708.CrossRefGoogle Scholar
  22. Poteshman, A. M. (2001). Underreaction, overreaction, and increasing misrreaction to information in the options market. Journal of Finance, 56(3), 851–876.CrossRefGoogle Scholar
  23. Rosillo, R., Giner, J., & De la Fuente, D. (2014). The effectiveness of the combined use of VIX and Support Vector Machines on the prediction of S&P500. Neural Computing and Applications, 25(2), 321–332.Google Scholar
  24. Stein, J. (1989). Overreactions in the options market. Journal of Finance, 4(4), 1011–1023.CrossRefGoogle Scholar
  25. Whaley, R. E. (1993). Derivatives on market volatility: Hedging tools long overdue. The Journal of Derivatives, 1(1), 71–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Economics, Accounting and FinanceUniversity of La LagunaTenerifeSpain
  2. 2.Department of Business ManagementUniversity of LeónLeónSpain

Personalised recommendations