Computational Economics

, Volume 45, Issue 3, pp 359–395 | Cite as

Core–Periphery Structure in the Overnight Money Market: Evidence from the e-MID Trading Platform

Article

Abstract

We explore the network topology arising from a dataset of the overnight interbank transactions on the e-MID trading platform from January 1999 to December 2010. In order to shed light on the hierarchical structure of the banking system, we estimate different versions of a core–periphery model. Our main findings are: (1) the identified core is quite stable over time in its size as well as in many structural properties, (2) there is also high persistence over time of banks’ identified positions as members of the core or periphery, (3) allowing for asymmetric ‘coreness’ with respect to lending and borrowing considerably improves the fit and reveals a high level of asymmetry and relatively little correlation between banks’ ‘in-coreness’ and ‘out-coreness’, and (4) we show that the identified core–periphery structure could not have been obtained spuriously from random networks. During the financial crisis of 2008, the reduction of interbank lending was mainly due to core banks reducing their numbers of active outgoing links.

Keywords

Interbank market Network models Systemic risk  Financial crisis 

JEL Classification

G21 G01 E42 

Supplementary material

10614_2014_9427_MOESM1_ESM.pdf (409 kb)
Supplementary material 1 (pdf 409 KB)

References

  1. Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5), 1977–2016.CrossRefGoogle Scholar
  2. Affinito, M. (2012). Do interbank customer relationships exist? And how did they function in the crisis? Learning from Italy. Journal of Banking and Finance, 36(12), 3163–3184.CrossRefGoogle Scholar
  3. Akram, Q., & Christophersen, C. (2013). Norwegian overnight interbank interest rates. Computational Economics, 41(1), 11–29.CrossRefGoogle Scholar
  4. Allen, F., & Gale, D. (2000). Financial Contagion. Journal of Political Economy, 108(1), 1–33.CrossRefGoogle Scholar
  5. Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.CrossRefGoogle Scholar
  6. Beaupain, R., & Durré, A. (2012). Nonlinear liquidity adjustments in the Euro area overnight money market, working paper series 1500, European Central Bank.Google Scholar
  7. Bech, M., & Atalay, E. (2010). The topology of the federal funds market. Physica A, 389(22), 5223–5246.CrossRefGoogle Scholar
  8. Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21(4), 375–395.CrossRefGoogle Scholar
  9. Boss, M., Elsinger, H., Summer, M., & Thurner, S. (2004). Network topology of the interbank market. Quantitative Finance, 4(6), 677–684.CrossRefGoogle Scholar
  10. Boyd, J. P., Fitzgerald, W. J., & Beck, R. J. (2006). Computing core/periphery structures and permutation tests for social relations data. Social Networks, 28, 165–178.CrossRefGoogle Scholar
  11. Boyd, J. P., Fitzgerald, W. J., Mahutga, M. C., & Smith, D. A. (2010). Computing continuous core/periphery structures for social relations data with MINRES/SVD. Social Networks, 32(2), 125–137.CrossRefGoogle Scholar
  12. Braeuning, F. (2011). Relationship lending and peer monitoring: Evidence from interbank payment data, Tinbergen Institute, MimeoGoogle Scholar
  13. Brede, M., & de Vries, B. J. (2009). Networks that optimize a trade-off between efficiency and dynamical resilience. Physics Letters A, 373(43), 3910–3914.CrossRefGoogle Scholar
  14. Brusco, M. (2011). An exact algorithm for a core/periphery bipartitioning problem. Social Networks, 33(1), 12–19.CrossRefGoogle Scholar
  15. Caccioli, F., Catanach, T. A., & Doyne Farmer, J. (2011). Heterogeneity, correlations and financial contagion. ArXiv [E-prints].Google Scholar
  16. Christley, R. M., Pinchbeck, G. L., Bowers, R. G., Clancy, D., French, N. P., Bennett, R., et al. (2005). Infection in social networks: Using network analysis to identify high-risk individuals. American Journal of Epidemiology, 162(10), 1024–1031.CrossRefGoogle Scholar
  17. Cocco, J. F., Gomes, F. J., & Martins, N. C. (2009). Lending relationships in the interbank market. Journal of Financial Intermediation, 18(1), 24–48.CrossRefGoogle Scholar
  18. Colander, D., Goldberg, M., Haas, A., Juselius, K., Kirman, A., Lux, T., et al. (2009). The financial crisis and the systemic failure of academic economics. Critical Review, 21(2–3), 249–267.CrossRefGoogle Scholar
  19. Craig, B., & von Peter, G. (forthcoming). Interbank tiering and money center banks. Journal of Financial Intermediation.Google Scholar
  20. de Bandt, O., & Hartmann P. (2000). Systemic risk: A survey, working paper series 35, European Central Bank.Google Scholar
  21. De Masi, G., Iori, G., & Caldarelli, G. (2006). Fitness model for the Italian interbank money market. Phys. Rev. E, 74(6), 66112.CrossRefGoogle Scholar
  22. Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodelling. New York: Cambridge University Press.Google Scholar
  23. Everett, M. G., & Borgatti, S. P. (2000). Peripheries of cohesive subsets. Social Networks, 21(4), 397–407.CrossRefGoogle Scholar
  24. Finger, K., Fricke, D., & Lux, T. (2013). Network analysis of the e-MID overnight money market: The informational value of different aggregation levels for intrinsic dynamic processes. Computational Management Science, 10(2–3), 187–211.CrossRefGoogle Scholar
  25. Finger, K., & Lux T. (2014). The evolution of the banking network: An actor-oriented approach, mimeo.Google Scholar
  26. Freixas, X., Parigi, B. M., & Rochet, J.-C. (2000). Systemic risk, interbank relations and liquidity provision by the central bank. Journal of Money, Credit and Banking, 32(3), 611–638.CrossRefGoogle Scholar
  27. Fricke, D., Finger, K., & Lux, T. (2013). On Assortative and disassortative mixing in scale-free networks: The case of interbank credit networks, Kiel working paper 1830, Kiel Institute for the World Economy.Google Scholar
  28. Fricke, D., & Lux, T. (2013). On the distribution of links in the interbank network: Evidence from the e-MID overnight money market, Kiel working paper 1819, Kiel Institute for the World Economy.Google Scholar
  29. Goh, K.-I., Kahng, B., & Kim, D. (2001). Universal behavior of load distribution in scale-free networks. Physical Review Letters, 87, 278701.CrossRefGoogle Scholar
  30. Haldane, A. (2009). Rethinking the financial network, Speech delivered in April 2009 at the Financial Student Association, Amsterdam.Google Scholar
  31. Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355.CrossRefGoogle Scholar
  32. Ho, T. S. Y., & Saunders, A. (1985). A micro model of the federal funds market. Journal of Finance, 40(3), 977–988.CrossRefGoogle Scholar
  33. Inaoka, H., Ninomyia, T., Taniguchi, K., Shimizu, T., & Takayasu, H. (2004). Fractal network derived from banking transaction—an analysis of network structures formed by financial institutions, Bank of Japan working papers, pp. (04-E-04), 1–22.Google Scholar
  34. Iori, G., De Masi, G., Precup, O. V., Gabbi, G., & Caldarelli, G. (2008). A network analysis of the Italian overnight money market. Journal of Economic Dynamics and Control, 32(1), 259–278.CrossRefGoogle Scholar
  35. Iori, G., Jafarey, S., & Padilla, F. G. (2006). Systemic risk in the interbank market. Journal of Economic Behavior and Organization, 61(4), 525–542.CrossRefGoogle Scholar
  36. Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(1), 291–307.CrossRefGoogle Scholar
  37. Langfield, S., Liu, Z., & Ota, T. (2012). Mapping the UK interbank system, Bank of England, working paper.Google Scholar
  38. Luo, F., Li, B., Wan, X.-F., & Scheuermann, R. (2009). Core and periphery structures in protein interaction networks. BMC Bioinformatics, 10(Suppl 4), S8.CrossRefGoogle Scholar
  39. Markose, S., Giansante, S., Gatkowski, M., & Shaghaghi, A. R. (2010). Too interconnected to fail: Financial Contagion and systemic risk in network model of CDS and other credit enhancement obligations of US banks, Economics Discussion Papers 683, University of Essex, Department of Economics.Google Scholar
  40. Martinez-Jaramillo, S., Alexandrova-Kabadjova, B., Bravo-Benitez, B., & Solorzano-Margain, J. P. (2012). An empirical study of the Mexican banking system’s network and its implications for systemic risk, working papers 2012–07, Banco de Mexico.Google Scholar
  41. Mistrulli, P. E. (2007). Assessing financial Contagion in the interbank market: Maximum entropy versus observed interbank lending patterns, Temi di discussione (Economic working papers) 641, Bank of Italy, Economic Research Department.Google Scholar
  42. Mullins, N. C., Hargens, L. L., Hecht, P. K., & Kick, E. L. (1977). The group structure of cocitation clusters: A comparative study. American Sociological Review, 42(4), 552–562.CrossRefGoogle Scholar
  43. Muniz, A. S. G., & Carvajal, C. R. (2006). Core/periphery structure models: An alternative methodological proposal. Social Networks, 28(4), 442–448.CrossRefGoogle Scholar
  44. Muniz, A. S. G., Raya, A. M., & Carvajal, C. R. (2011). Core periphery valued models in input–output field: A scope from network theory. Papers in Regional Science, 90(1), 111–121.CrossRefGoogle Scholar
  45. Netotea, S., & Pongor, S. (2006). Evolution of robust and efficient system topologies. Cellular Immunology, 244(2), 80–83.CrossRefGoogle Scholar
  46. Persitz, D. (2009). Power in the heterogeneous connections model: The emergence of core–periphery networks, working papers 2009.42, Fondazione Eni Enrico Mattei.Google Scholar
  47. Sheldon, G., & Maurer, M. (1998). Interbank lending and systemic risk: An empirical analysis for Switzerland. Swiss Journal of Economics and Statistics (SJES), 134(IV), 685–704.Google Scholar
  48. Snijders, T. A. B. (1996). Stochastic actor-oriented dynamic network analysis. Journal of Mathematical Sociology, 21, 149–172.CrossRefGoogle Scholar
  49. Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31(1), 361–395.CrossRefGoogle Scholar
  50. Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., & Beyeler, W. (2007). The topology of interbank payment flows. Physica A, 379, 317–333.CrossRefGoogle Scholar
  51. Stolzenburg, U., & Lux, T. (2011). Identification of a core–periphery structure among participants of a Business Climate Survey. Eur. Phys. J. B., 84, 521–533.CrossRefGoogle Scholar
  52. Summer, M. (2013). Financial contagion and network analysis. Annual Review of Financial Economics, 5, 277–297.CrossRefGoogle Scholar
  53. Trichet, J. (2011). Intellectual challenges to financial stability analysis in the era of macroprudential oversight. Financial Stability Review, 15, 139–149.Google Scholar
  54. Upper, C., & Worms, A. (2004). Estimating bilateral exposures in the German interbank market: Is there a danger of Contagion? Cross-Border Bank Contagion in Europe, European Economic Review, 48(4), 827–849.Google Scholar
  55. van Lelyveld, I., & in ’t Veld, D. (2012). Finding the core: Network structure in interbank markets, DNB working papers 348, Netherlands Central Bank, Research Department.Google Scholar
  56. Vriend, N. J. (1995). Self-organization of markets: An example of a computational approach. Computational Economics, 8(3), 205–231.CrossRefGoogle Scholar
  57. Wilhite, A. (2001). Bilateral trade and ‘small-world’ networks. Computational Economics, 18(1), 49–64.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for New Economic Thinking, Oxford Martin SchoolUniversity of OxfordOxfordUK
  2. 2.CABDyN Complexity Centre, Saïd Business SchoolUniversity of OxfordOxfordUK
  3. 3.Kiel Institute for the World EconomyKielGermany
  4. 4.Department of EconomicsUniversity of KielKielGermany
  5. 5.Banco de España Chair in Computational EconomicsUniversity Jaume ICastellónSpain

Personalised recommendations