Partially Adaptive Estimation of Interval Censored Regression Models

Abstract

Several valuable data sources, including the census and National Longitudinal Survey of Youth, include data measured using interval responses. Many empirical studies attempt estimation by assuming the data correspond to the interval midpoints and then use OLS or maximum likelihood assuming normality. Stata performs maximum likelihood estimates (MLE) under the assumption of normality, allowing for intra-group variation. In the presence of heteroskedasticity or distributional misspecification, these estimates are inconsistent. In this paper we focus on an estimation procedure that helps prevent distributional misspecification for interval censored data. We explore the application of partially adaptive estimation, which builds on the MLE framework with families of flexible parametric probability density functions which include the normal as a limiting case. These methods are used to estimate determinants associated with household expenditures based on US Census data. Monte Carlo Simulations are performed to compare the relative efficiency of the different methods of estimation. We find that the flexible nature of our proposed partially adaptive estimation technique significantly reduces estimator bias and improves efficiency in the presence of distributional misspecification.

This is a preview of subscription content, log in to check access.

References

  1. Albert J. H., Chib S. (1993) Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88(422): 669–679

    Article  Google Scholar 

  2. Amemiya T. (1973) Regression analysis when the dependent variable is a truncated normal. Econometrica 49: 997–1016

    Article  Google Scholar 

  3. Bellemare M. F., Barrett C. B. (2006) An ordered tobit model of market participation: Evidence from Kenya and Ethiopia. American Journal of Agricultural Economics 88(2): 324–337

    Article  Google Scholar 

  4. Bickel P. (1982) On adaptive estimation. Annals of Statistics 10: 647–671

    Article  Google Scholar 

  5. Cameron T. A., Huppert D. D. (1989) OLS versus ML estimation of non-market resource values with payment card interval data. Journal of Environmental Economics and Management 17(3): 230–246

    Article  Google Scholar 

  6. Caudill, S. B. (2010). A partially adaptive estimator for the censored regression model based on a mixture of normal distributions. doi:10.1007/s10260-011-0182-z

  7. Caudill S. B., Jackson J. D. (1993) Heteroskedasticity and grouped data regression. Southern Economic Journal 60: 128–135

    Article  Google Scholar 

  8. Caudill S. B., Long J. (2011) Do former athletes make better managers? Evidence from a partially adaptive grouped-data regression model. Empirical Economics 39: 275–290

    Article  Google Scholar 

  9. Cawley J. (2008) Contingent valuation analysis of willingness to pay to reduce childhood obesity. Economics and Human Biology 6: 281–292

    Article  Google Scholar 

  10. Chib S. (1992) Bayes inference in the tobit censored regression model. Journal of Econometrics 51: 79–99

    Article  Google Scholar 

  11. Cosslett S. R. (2004) Efficient semiparametric estimation of censored and truncated regressions via a smoothed self-consistency equation. Econometrica 72(4): 1277–1293

    Article  Google Scholar 

  12. Groothuis-Oudshoorn C. G. M., Miedema H. M. E. (2006) Multilevel grouped regression for analyzing self-reported health in relation to environmental factors: The model and its application. Biometrical Journal 48: 67–82

    Article  Google Scholar 

  13. Hanemann J. L., Loomis J., Kanninen B. (1991) Statistical efficiency of double-bounded dichotomous choice contingent valuation. American Journal of Agricultural Economics 73(4): 1255–1263

    Article  Google Scholar 

  14. Hansen B. E. (1994) Autoregressive conditional density estimation. International Economic Review 35(3): 705–730

    Article  Google Scholar 

  15. Hansen C., McDonald J. B., Newey W. (2010) Instrumental variables estimation with flexible distributions. Journal of Economics and Business Statistics 28: 13–25

    Article  Google Scholar 

  16. Hansen J. V., McDonald J. B., Theodossiou P., Larsen B. J. (2010) Partially adaptive econometric methods for regression and classification. Computational Economics 36: 153–169

    Article  Google Scholar 

  17. Holloway G. J., Nicolson C., Delgado C., Staal S., Ehui S. (2004) A revised tobit procedure for mitigating bias in the presence of non-zero censoring with an application to milk-market participation in the Ethiopian highlands. Agricultural Economics 31: 97–106

    Article  Google Scholar 

  18. Honore B. E., Powell J. L. (1994) Pairwise difference estimators of censored and truncated regression models. Journal of Econometrics 64: 241–278

    Article  Google Scholar 

  19. Johnson N. L. (1949) Systems of frequency curves generated by methods of translation. Biometrika 36: 149–176

    Google Scholar 

  20. Lee M. J. (1993) Quadratic mode regression. Journal of Econometrics 42: 337–349

    Article  Google Scholar 

  21. Manski C. F., Tamer E. (2002) Inference on regressions with interval data on a regressor or outcome. Econometica 70(2): 519–546

    Article  Google Scholar 

  22. McDonald J. B., Newey W. K. (1988) Partially adaptive estimation of regression models via the generalized T distribution. Econometric Theory 4: 428–457

    Article  Google Scholar 

  23. McDonald J. B., Turley P. A. (2011) Distributional characteristics: Just a few more moments. The American Statistician 65: 96–103

    Article  Google Scholar 

  24. McDonald, J. B., & Xu, Y. J. (1993). A generalization of the beta distribution with applications. Journal of Econometrics, 66, 133–152, Errata 69, 4217–1428.

    Google Scholar 

  25. McDonald J. B., Xu Y. J. (1996) A comparison of semi-parametric and partially adaptive estimators of the censored regression model with possibly skewed and leptokurtic error distributions. Economic Letters 51: 153–159

    Article  Google Scholar 

  26. Newey W. K. (1987) Specification tests for distributional assumptions in the tobit model. Journal of Econometrics 34: 125–145

    Article  Google Scholar 

  27. O’Garra T., Mourato S. (2007) Public preferences for hydrogen buses: Comparing interval data, OLS and quantile regression approaches. Environmental and Resource Economics 36(36): 389–411

    Article  Google Scholar 

  28. Phillips R. F. (1994) Partially adaptive estimation via a normal mixture. Journal of Econometrics 64: 123–144

    Article  Google Scholar 

  29. Powell J. L. (1984) Least absolute deviations estimation for the censored regression model. Journal of Econometrics 25: 303–325

    Article  Google Scholar 

  30. Powell J. L. (1986) Symmetrically trimmed least squares estimation for tobit models. Econometrica 54: 1435–1460

    Article  Google Scholar 

  31. Ramiez O. A., Misra S. K., Nelson J. (2003) Efficient estimation of agricultural time series models with non-normal dependent variables. American Journal of Agricultural Economics 85(4): 1029–1040

    Article  Google Scholar 

  32. Smith R. D. (2003) Construction of the contingent valuation market in health aare: A critical assessment. Health Economics 12: 609–628

    Article  Google Scholar 

  33. Stewart M. B. (1983) On least squares estimation when the dependent variable is grouped. Review of Economic Studies 50: 737–753

    Article  Google Scholar 

  34. Theodossiou P. (1998) Financial data and the skewed generalized t distribution. Management Science 44: 1650–1661

    Article  Google Scholar 

  35. Tobin J. (1958) Estimation of relationships for limited dependent variables. Econometrica 26: 24–36

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James McDonald.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cook, J., McDonald, J. Partially Adaptive Estimation of Interval Censored Regression Models. Comput Econ 42, 119–131 (2013). https://doi.org/10.1007/s10614-012-9324-0

Download citation

Keywords

  • Partially adaptive estimation
  • Grouped data
  • Interval data
  • Contingent valuation