Skip to main content
Log in

Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper shows how to build in a computationally efficient way a maximum simulated likelihood procedure to estimate the Cox–Ingersoll–Ross model from multivariate time series. The advantage of this estimator is that it takes into account the exact likelihood function while avoiding the huge computational burden associated with MCMC methods and without the ad hoc assumption that certain bond yields are measured without error. The proposed methodology is implemented and tested on simulated data. For realistic parameter values the estimator seems to have good small sample properties, compared to the popular quasi maximum likelihood approach, even using moderate simulation sizes. The effect of simulation errors does not seem to undermine the estimation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakshi S. B., Chen Z. (1997) An alternative valuation model for contingent claims. Journal of Financial Economics 44: 123–165

    Article  Google Scholar 

  • Ball C. A., Tourous W. N. (1996) Unit roots and the estimation of interest rate dynamics. Journal of Empirical Finance 3: 215–238

    Article  Google Scholar 

  • Brigo, D., & Mercurio, F. (2000). The CIR++ model and other deterministic-shift extensions of short rate models. In Proceedings of the 4th Columbia-JAFEE conference for mathematical finance and financial engineering (pp. 563–584), Tokyo, 16–17 December.

  • Chiarella C., Hung H., Tô T.-D. (2009) The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach. Computational Statistics and Data Analysis 53: 2075–2088

    Article  Google Scholar 

  • Chiarella C., Tô T.-D. (2006) The multifactor nature of the volatility of futures markets. Computational Economics 27: 163–183

    Article  Google Scholar 

  • Cox J. C., Ingersoll J. E., Ross S. (1985) A theory of the term structure of interest rates. Econometrica 53: 385–407

    Article  Google Scholar 

  • Dai Q., Singleton K. J. (2000) Specification analysis of affine term structure models. Journal of Finance 55: 1943–1978

    Article  Google Scholar 

  • de Jong F. (2000) Time-series and cross-section information in affine term structure models. Journal of Business and Economic Statistics 18: 300–314

    Article  Google Scholar 

  • de Jong F., Santa-Clara P. (1999) The dynamics of the forward interest rate curve: A formulation with state variables. Journal of Financial and Quantitative Analysis 34: 131–157

    Article  Google Scholar 

  • Doucet A., de Freitas N., Gordon N. (2001) An introduction to sequential Monte Carlo methods. In: Doucet A., de Freitas N., Gordon N. (eds) Sequential Monte Carlo methods in practice. Springer, New York, pp 3–14

    Google Scholar 

  • Doucet A., Godsill S., Andrieu C. (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10: 197–208

    Article  Google Scholar 

  • Doucet A., Tadić V. B. (2003) Parameter estimation in general state-space models using particle methods. Annals of the Institute of Mathematical Statistics 55: 409–422

    Google Scholar 

  • Duan J. C., Simonato J. G. (1999) Estimating and testing exponential-affine term structure models by Kalman filter. Review of Quantitative Finance and Accounting 13: 102–127

    Article  Google Scholar 

  • Duffee G. R. (1999) Estimating the price of default risk. Review of Financial Studies 12: 197–226

    Article  Google Scholar 

  • Duffee, G. R., & Stanton, R. (2004). Estimation of dynamic term structure models. Working Paper, University of Berkeley.

  • Durham G. B., Gallant A. R. (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business and Economic Statistics 20: 325–327

    Article  Google Scholar 

  • Geyer A. L. J., Pichler S. (1999) A state-space approach to estimate and test multifactor Cox–Ingersoll–Ross models of the term structure. Journal of Financial Research 23: 107–130

    Google Scholar 

  • Godsill S. J., Doucet A., West M. (2004) Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association 99: 156–168

    Article  Google Scholar 

  • Harvey A. C., De Rossi G. (2006) Signal extraction. In: Mills T. C., Patterson K. (eds) Palgrave handbook of econometrics: Volume 1 econometric theory. Palgrave Macmillan, Basingstoke

    Google Scholar 

  • Hull J., White A. (1990) Pricing interest rate derivative securities. Review of Financial Studies 3: 573–592

    Article  Google Scholar 

  • Hürzeler M., Künsch H. R. (2001) Approximating and maximising the likelihood for a general state-space model. In: Doucet A., de Freitas N., Gordon N. (eds) Sequential Monte Carlo methods in practice. Springer, New York, pp 159–176

    Google Scholar 

  • Kitagawa G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5: 1–25

    Article  Google Scholar 

  • Lamoureux C., Witte H. D. (2002) Empirical analysis of the yield curve: The information in the data viewed through the window of Cox, Ingersoll and Ross. Journal of Finance 57: 1479–1520

    Article  Google Scholar 

  • Longstaff F. A., Schwartz S. (1992) Interest rate volatility and the term structure: A two factor general equilibrium model. Journal of Finance 47: 1259–1282

    Article  Google Scholar 

  • Lund, J. (1997). Econometric analysis of continuous-time arbitrage-free models of the term structure of interest rates. Unpublished Working Paper, Aarhus School of Business.

  • Michalewicz Z. (1999) Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin

    Google Scholar 

  • Pitt, M. (2002). Smooth particle filters for likelihood evaluation and maximisation. Warwick Economic Research Papers, Department of Economics, 651.

  • Pitt M., Shephard N. (1999) Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association 94: 590–599

    Article  Google Scholar 

  • Takahashi A., Sato S. (2001) Monte Carlo filtering approach for estimating the term structure of interest rates. Annals of the Institute of Statistical Mathematics 53: 50–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano De Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Rossi, G. Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters. Comput Econ 36, 1–16 (2010). https://doi.org/10.1007/s10614-010-9208-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-010-9208-0

Keywords

Navigation