Skip to main content
Log in

Dynamics and Structure of the 30 Largest North American Companies

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper we describe a method to analyze the structure and dynamics of the 30 largest North American companies. The method combines the tools of symbolic time series analysis (Daw et al. in Rev Sci Instrum 74:916–930, 2003) with the nearest neighbor single linkage clustering algorithm (Mantegna and Stanley in An introduction to econophysics: Correlations and complexity in finance, Cambridge University Press, UK, 2000). Data symbolization allows to obtain a metric distance between two different time series that is used to construct a minimal spanning tree allowing to compute an ultrametric distance. From the analysis of time series data of companies included in Dow Jones Industrial Average, we derive a hierarchical organization of these companies. In particular, we detect different clusters of companies which correspond with their common production activities or their strong interrelationship. The obtained classification of companies can be used to study deep relationships among different branch of economic activities and to construct financial portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrne G. (1994) Social organizations. Interaction inside, outside and between organizations. Sage Publications, London

    Google Scholar 

  • Boillat P. Y., de Skowronski N., Tuchschmid N. (2002) Cluster analysis: Application to sector indices and empirical validation. Financial Markets and Portfolio Management 16(4): 467–486

    Article  Google Scholar 

  • Bollt E. M., Stanford T., Lai Y. C., Zyczkowski Y.C. (2001) What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series. Physica D 154: 259–286

    Article  Google Scholar 

  • Bonanno G., Lillo F., Mantegna R. N. (2001) High-frequency cross-correlation in a set of stocks. Quantitative Finance 1: 96–104

    Article  Google Scholar 

  • Bonanno G., Caldarelli G., Lillo F., Mantegna R. N. (2003) Topology of correlation based minimal spanning trees in real and model markets. Physical Review E 68: 046130

    Article  Google Scholar 

  • Bonanno G., Calderelli G., Lillo F., Micciché S., Vandewalle N., Mantegna R. N. (2004) Networks of equities in financial markets. The European Physical Journal B 38: 363–371

    Article  Google Scholar 

  • Brida J.G., Punzo L. F. (2003) Symbolic time series analysis and dynamic regimes. Structural Change and Economic Dynamics 14: 159–183

    Article  Google Scholar 

  • Brida J. G., Garrido N. (2006) Exploring two inflationary regimes in Latin-American economies: A binary time series analysis. International Journal of Modern Physics C 17(1): 343–356

    Article  Google Scholar 

  • Brida J. G., Matesanz Gómez D., Risso W. A. (2009) Symbolic hierarchical analysis in currency markets. An application to contagion in currency crises. Expert Systems with Applications 36: 7721–7728

    Article  Google Scholar 

  • Burt R., Carlton D. (1989) Another look at the network boundaries of American markets. The American Journal of Sociology 95(3): 723–753

    Article  Google Scholar 

  • Daw C. S., Finney C. E. A., Tracy E. R. (2003) A review of symbolic analysis of experimental data. Review of Scientific Instruments 74: 916–930

    Article  Google Scholar 

  • Elton E. J., Gruber M. J. (1997) Modern portfolio theory, 1950 to date. Journal of Banking and Finance 21: 1743–1759

    Article  Google Scholar 

  • Feser E., Sweeny S. (2000) A test for the coincident economic and spatial clustering of business enterprises. Journal of Geographical Systems 2: 349–373

    Article  Google Scholar 

  • Forbes K. J., Rigobon R. (2001) Measuring contagion: Conceptual and empirical issues. In: Claessens S., Forbes K. J. (eds) International financial contagion. Kluwer Academic Press, Boston, MA

    Google Scholar 

  • Forbes K. J., Rigobon R. (2002) No contagion, only interdependence: Measuring stock market co-movements. Journal of Finance 57(5): 2223–2261

    Article  Google Scholar 

  • Gafiychuk V. V., Daysko B. Y., Izmaylova J. (2004) Analysis of data clusters obtained by self-organizing methods. Physica A 341: 547–557

    Article  Google Scholar 

  • Gower J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4): 325–338

    Google Scholar 

  • Hakansson H., Ford D. (2002) How should companies interact in business networks ?. Journal of Business Research 55: 133–139

    Article  Google Scholar 

  • Halinen A., Tornroos J. (1998) The role of embeddedness in the evolution of business networks. Scandinavian Journal of Management 14(3): 187–205

    Article  Google Scholar 

  • Halinen A., Tornroos J. (2005) Using case method in the study of contemporary business networks. Journal of Business Research 58: 1285–1297

    Article  Google Scholar 

  • Henderson J., Dicken P., Hess N., Yeung H. (2002) Global production networks and the analysis of economic development. Review of International Political Economy 9: 436–464

    Article  Google Scholar 

  • Hirata Y., Judd K., Kilaminster D. (2004) Estimating a generating partition from observed time series: Symbolic shadowing. Physical Review E 70: 016215

    Article  Google Scholar 

  • Holton G.A. (2003) Value-at-risk: Theory and practise. Academic Press, San Diego

    Google Scholar 

  • Jorion P. (1997) Value at risk: The new benchmark for controlling derivatives risk. McGraw-Hill, New York

    Google Scholar 

  • Kaski K., Onnela J. P., Chakraborti A. (2003) Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E 68: 056110

    Article  Google Scholar 

  • Keller K., Wittfeld K. (2004) Distances of time series components by means of symbolic dynamics. International Journal of Bifurcation and Chaos 14(2): 693–703

    Article  Google Scholar 

  • Kurths J., Schwarz U., Witt A., Krampe R. T., Abel M. (1996) Measures of complexity in signal analysis. In: Kratz R. A. (eds) Chaotic, fractal, and nonlinear signal processing. AIP Press Woodbury, NewYork, pp 33–54

    Google Scholar 

  • Mantegna R. N. (1999) Hierarchical structure in financial markets. The European Physical Journal B 11: 193–197

    Article  Google Scholar 

  • Mantegna R. N., Stanley H. E. (2000) An introduction to econophysics: Correlations and complexity in finance. Cambridge University Press, UK

    Google Scholar 

  • Mizuno T., Takayasu H., Takayasu M. (2006) Correlation networks among currencies. Physica A 364: 336–342

    Article  Google Scholar 

  • Molgedey L., Ebeling W. (2000) Local order, entropy and predictability of financial time series. The European Physical Journal B 15: 733–737

    Article  Google Scholar 

  • Onnela J. P, Chakraborti A., Kaski K., Kertesz J., Kanto A. (2003) Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E 68: 056110

    Google Scholar 

  • Ortega G., Matesanz D. (2005) Cross-country hierarchical structure and currency crises. International Journal of Modern Physics C 17(03): 333–341

    Article  Google Scholar 

  • Piccardi C. (2004) On the control of chaotic systems via symbolic time series analysis. Chaos 14(4): 1026–1034

    Article  Google Scholar 

  • Ramal R., Toulouse G., Virasoro M. A. (1986) Ultrametricity for physicists. Review of Modern Physics 58(3): 765–788

    Article  Google Scholar 

  • Souma W., Aoyama H., Fujiwara Y., Ikeda Y., Iyetomi H., Kaizoji T. (2006) Correlation in business networks. Physica A 370: 151–155

    Article  Google Scholar 

  • Tang X. Z., Tracy E. R. (1997) Data compression and information retrieval via symbolization. Chaos 8:3: 688–696

    Google Scholar 

  • Tang X. Z., Tracy E. R., Brown R. (1997) Symbol statistics and spatio-temporal systems. Physica D 102: 253–261

    Article  Google Scholar 

  • Tang X. Z., Tracy E. R., Boozer A. D., deBrown A., Brown R. (1994) Reconstruction of chaotic signal using symbolic data. Physical Letters A 190: 393–398

    Article  Google Scholar 

  • Tang X. Z., Tracy E. R., Boozer A. D., deBrauw A., Brown R. (1995) Symbol sequence statistics in noisy chaotic signal reconstruction. Physical Review E 51:5: 3871–3889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiston Adrián Risso.

Additional information

Our research was supported by the Free University of Bolzano (project “Dynamical Regimes in Economics: modelling and statistical tools”). A preliminary version of this paper was presented at the International Conference on Computational and Financial Econometrics, Department of Econometrics, University of Geneva, Switzerland, April 20–22, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brida, J.G., Risso, W.A. Dynamics and Structure of the 30 Largest North American Companies. Comput Econ 35, 85–99 (2010). https://doi.org/10.1007/s10614-009-9187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-009-9187-1

Keywords

JEL Classification

Navigation