Arrowsmith D.K., Place C.M. (1995) An introduction to dynamical systems. Cambridge University Press, Cambridge
Google Scholar
Boldrin M., Woodford M. (1990) Equilibrium models displaying endogenous fluctuations and chaos: A survey. Journal of Monetary Economics 25: 189–222
Article
Google Scholar
Brock W.A., Hommes C.H. (1997) A rational route to randomness. Econometrica 65: 1059–1095
Article
Google Scholar
Brock W.A., Hsieh D.A., LeBaron B. (1991) Nonlinear dynamics, chaos and instability: Statistical theory and economic evidence. MIT Press, Cambridge
Google Scholar
Chiarella C. (1988) The cobweb model: Its instability and the onset of chaos. Economic Modeling 5: 377–384
Article
Google Scholar
Day R.H. (1994) Complex economic dynamics. Volume I: An introduction to dynamical systems and market mechanisms. MIT Press, Cambridge
Google Scholar
Devaney R.L. (1989) An introduction to chaotic dynamical systems (2nd ed). Addison Wesley Publication, Redwood City
Google Scholar
Diks C.G.H., Weide R. (2005) Herding, a-synchronous updating and heterogeneity in memory in a CBS. Journal of Economic Dynamics and Control 29: 741–763
Article
Google Scholar
Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Oldeman, B. E., Sandstede, B., & Wang, X. J. (2001). AUTO2000: Continuation and bifurcation software for ordinary differential equations. Applied and Computational Mathematics. California Institute of Technology. http://indy.cs.concordia.ca/auto/.
Ezekiel M. (1938) The cobweb theorem. Quarterly Journal of Economics 52: 255–280
Article
Google Scholar
Grandmont J.-M. (1985) On endogenous competitive business cycles. Econometrica 53: 995–1046
Article
Google Scholar
Grandmont, J.-M. (1988). Nonlinear difference equations, bifurcations and chaos: An introduction. CEPREMAP Working Paper No 8811, June 1988.
Guckenheimer J., Holmes P. (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Verlag, New York
Google Scholar
Hommes, C. H. (1991). Chaotic dynamics in economic models. Some simple case-studies. Groningen Theses in Economics, Management & Organization, Wolters-Noordhoff, Groningen.
Hommes C.H. (1994) Dynamics of the cobweb model with adaptive expectations and nonlinear supply and demand. Journal of Economic Behavior & Organization 24: 315–335
Article
Google Scholar
Hommes, C. H. (2006). Heterogeneous agent models in economics and finance, In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1109–1186). Amsterdam: North-Holland, Chap. 23.
Hommes C.H., Huang H., Wang D. (2005) A robust rational route to randomness in a simple asset pricing model. Journal of Economic Dynamics and Control 29: 1043–1072
Article
Google Scholar
Huberman B.A., Glance N.S. (1993) Evolutionary games and computer simulations. Proceedings of the National Academy of Sciences of the United States of America 90: 7716–7718
Article
Google Scholar
Kuznetsov Y. (1995) Elements of applied bifurcation theory. Springer Verlag, New York
Google Scholar
LeBaron, B. (2006), Agent-based computational finance. In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1187–1233). Amsterdam: North-Holland, Chap. 24.
Li T.Y., Yorke J.A. (1975) Period three implies chaos. American Mathematical Monthly 82: 985–992
Article
Google Scholar
Medio A. (1992) Chaotic dynamics. Theory and applications to economics. Cambridge University Press, Cambridge
Google Scholar
Medio A., Lines M. (2001) Nonlinear dynamics: A primer. Cambridge University Press, Cambridge
Google Scholar
Mira C., Gardini L., Barugola A., Cathala J.-C. (1996) Chaotic dynamics in two-dimensional noninvertible maps. World Scientific, Singapore
Google Scholar
Muth J.F. (1961) Rational expectations and the theory of price movements. Econometrica 29: 315–335
Article
Google Scholar
Nerlove M. (1958) Adaptive expectations and cobweb phenomena. Quarterly Journal of Economics 72: 227–240
Article
Google Scholar
Nowak M., May R.M. (1992) Evolutionary games and spatial chaos. Nature 359: 826–929
Article
Google Scholar
Nowak M., Bonhoeffer S., May R.M. (1992) Spatial and the maintainance of cooperation. Proceedings of the National Academy of Sciences of the United States of America 91: 4877–4881
Article
Google Scholar
Nusse, H. E., & Yorke, J. A. (1998). Dynamics: Numerical explorations (2nd ed.). Applied Mathematical Sciences (Vol. 101). Springer-Verlag.
Palis J., Takens F. (1993) Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, Cambridge
Google Scholar
Racine J. (2006) gnuplot 4.0: A portable interactive plotting utility. Journal of Applied Econometrics 21: 133–141
Article
Google Scholar
Rosser J.B. (2000) From catastrophe to chaos: A general theory of economic discontinuities. Kluwer, Boston
Google Scholar
Wolf A., Swift J.B., Swinney L., Vastano J.A. (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285–317
Article
Google Scholar