A Taxonomy of Inference in Simulation Models

Abstract

Simulation models have become increasingly popular in economics in the last two decades, because they can deal with a wide range of research questions. The set-up and analysis of simulation models can range from very specific to very general and can be underpinned by different combinations of theoretical considerations and empirical data. We offer a taxonomy of existing simulation approaches and show how their results can be used to explain observed economic features, examine economic systems and predict future economic processes. Moreover, we offer a new type of method that helps to better exploit empirical findings in simulation models.

This is a preview of subscription content, access via your institution.

References

  1. Atkinson T., Bourguignon F., O’Donoghue C., Sutherland H., Utili F. (2002). Microsimulation of social policy in the European Union: Case study of a European minimum pension. Economica 69: 229–243

    Article  Google Scholar 

  2. Brenner T. (2004). Localised industrial clusters: Existence, emergence and evolution. Routledge, London

    Google Scholar 

  3. Brenner, T., & Murmann, J. P. (2003). The use of simulations in developing robust knowledge about causal processes: Methodological considerations and an application to industrial evolution. Max-Planck-Institute of Economics, Jena, Papers on Economics & Evolution, mimeo: #0303.

  4. Brown A., Slater G., Spencer D.A. (2002). Driven to abstraction? Critical realism and the search for the ‘inner connection’ of social phenomena. Cambridge Journal of Economics 26: 773–788

    Article  Google Scholar 

  5. Citro C.F., Hanushek E.A. (eds) (1991). Improving information for social policy decisions: The uses of microsimulation modeling I, review and recommendations. National Academy Press, Washington DC

    Google Scholar 

  6. Creedy J., Duncan A. (2002). Behavioural microsimulation with labour supply responses. Journal of Economic Surveys 16(1): 1–39

    Article  Google Scholar 

  7. Downward P.J., Finch H., Ramsay J. (2002). Critical realism, empirical methods and inference: A critical discussion. Cambridge Journal of Economics 26: 481–500

    Article  Google Scholar 

  8. Eliasson G.D., Johansson D., Taymaz E. (2004). Simulating the new economy. Structural Change and Economic Dynamics 15(3): 289–314

    Article  Google Scholar 

  9. Eliasson G.D., Taymaz E. (2000). Institutions, entrepreneurship, economic Flexibility and growth—experiments on an evolutionary micro-to-marco model. In: Cantner U., Hanusch H., Klepper S. (eds) Economic evolution, learning, and complexity. Springer-Verlag, Heidelberg, pp 265–286

    Google Scholar 

  10. Fagiolo G., Dosi G. (2003). Exploitation, exploration and innovation in a model endogenous growth with locally interacting agents. Structural Change and Economic Dynamics 14: 237–273

    Article  Google Scholar 

  11. Harrison J.R. (2004). Models of growth in organizational ecology: A simulation assessment. Industrial and Corporate Change 13(1): 243–261

    Article  Google Scholar 

  12. Jacobson T., Karlsson S. (2004). Finding good predictors for inflation: A Bayesian model averaging approach. Journal of Forcasting 23: 479–496

    Article  Google Scholar 

  13. Jochmann M., Leon-Gonzalez R. (2004). Estimating the demand for health care with panel data: a semiparametric Bayesian approach. Health Economics 13: 1003–1014

    Article  Google Scholar 

  14. Kaldor N. (1968). Capital accumulation and economic growth. In: Lutz F.A., Hague D.C., (eds) The theory of capital Proceedings of a Conference held by the International Economic Association (1958). Macmillan Press, London, pp 177–222

    Google Scholar 

  15. Kaufmann S. (2000). Measuring business cycles with a dynamic Markov switching factor model: An assessment using Bayesian simulation methods. Econometrics Journal 3: 39–65

    Article  Google Scholar 

  16. Kim C.W., Lee K. (2003). Innovation, technological regimes and organizational selection in industry evolution: A ‘History Friendly Model’ of the DRAM industry. Industrial and Corporate Change 12(6): 1195–1221

    Article  Google Scholar 

  17. Lawson T. (1997). Economics and reality. Routledge, London

    Google Scholar 

  18. Malerba F., Nelson R., Orsenigo L., Winter S. (1999). ‘History-friendly’ models of industry evolution: The Computer Industry. Industrial and Corporate Change 8: 3–40

    Article  Google Scholar 

  19. Malerba F., Orsenigo, L. (2002). Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: Toward a History-Friendly Model. Industrial and Corporate Change 11: 667–703

    Article  Google Scholar 

  20. Merz J. (1991). Microsimulation—a survey of principles, developments and applications. International Journal of Forecasting 7: 77–104

    Article  Google Scholar 

  21. Moss, S., & Edmonds, B. (2005). Towards good social science. Journal of Artificial Societies and Social Simulation, 8(4).

  22. O’Donoghue, C. (2001). Dynamic microsimulation: A methodological survey. Brazilian Electronic Journal of Economics, 4(2).

  23. O’Donoghue C., Sutherland H. (1999). Accounting for the family in European income tax systems. Cambridge Journal of Economics 23: 565–598

    Article  Google Scholar 

  24. Pavitt K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy 13: 343–373

    Article  Google Scholar 

  25. Peirce, C. S., (1867/1965). Collected papers of Charles Sanders Peirce. C. Hartshorne & P. Weiss (Eds.), 1–6, Cambridge (MA) US: Harvard University Press.

  26. Richiardi, M., Leombruni, R., Saam, N., & Sonnessa, M. (2006). A common protocol for agent-based social simulation. Journal of Artificial Societies and Social Simulation, 9(1).

  27. Schwerin, J. (2001). Wachstumsdynamik in Transformationsökonomien. Strukturähnlichkeiten seit der Industriellen Revolution und ihre Bedeutung für Theorie und Politik, Böhlau Verlag, Köln, Weimar, Wien.

  28. Tsionas E.G. (2000). Bayesian model comparison by Markov chain simulation: Illustration using stock market data. Research in Economics 54: 403–416

    Article  Google Scholar 

  29. Thagard P. (1988). Computational philosophy of science. MIT Press, Cambridge (MA) US

    Google Scholar 

  30. Werker C. (2003). Market performance and competition: A product life cycle model. Technovation 23: 281–290

    Article  Google Scholar 

  31. Werker, C., & Brenner, T. (2004). Empirical calibration of simulation models. Papers on Economics & Evolution #0410, Max Planck Institute of Economics, Jena.

  32. Windrum P., Birchenhall C. (1998). Is life cycle theory a special case? Dominant designs and the emergence of market niches through co-evolutionary learning. Structural Change and Economic Dynamics 9: 109–134

    Article  Google Scholar 

  33. Winter S.G., Kaniovski Y.M., Dosi G. (2003). A baseline model of industry evolution. Journal of Evolutionary Economics 13: 355–383

    Article  Google Scholar 

  34. Zellner A. (1971). An introduction to Bayesian inference in econometrics. Wiley, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Brenner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brenner, T., Werker, C. A Taxonomy of Inference in Simulation Models. Comput Econ 30, 227–244 (2007). https://doi.org/10.1007/s10614-007-9102-6

Download citation

Keywords

  • Methodology
  • Simulation models
  • Theory
  • Empirical data

JEL Classification

  • B41
  • B52
  • C63