Skip to main content
Log in

An Application of Extreme Value Theory for Measuring Financial Risk

  • Published:
Computational Economics Aims and scope Submit manuscript


Assessing the probability of rare and extreme events is an important issue in the risk management of financial portfolios. Extreme value theory provides the solid fundamentals needed for the statistical modelling of such events and the computation of extreme risk measures. The focus of the paper is on the use of extreme value theory to compute tail risk measures and the related confidence intervals, applying it to several major stock market indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Azzalini, A. (1996). Statistical Inference Based on the Likelihood. Chapman and Hall, London.

    Google Scholar 

  • Balkema, A.A. and de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.

    Google Scholar 

  • Castillo, E. and Hadi, A. (1997). Fitting the Generalized Pareto Distribution to Data. Journal of the American Statistical Association, 92(440), 1609–1620.

    Article  Google Scholar 

  • Christoffersen, P. and Diebold, F. (2000). How relevant is volatility forecasting for financial risk management. Review of Economics and Statistics, 82, 1–11.

    Article  Google Scholar 

  • Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.

  • Dacorogna, M.M., Müller, U.A., Pictet, O.V., and de Vries, C.G. (1995). The distribution of extremal foreign exchange rate returns in extremely large data sets. Preprint, O&A Research Group.

  • Danielsson, J. and de Vries, C. (1997). Beyond the Sample: Extreme Quantile and Probability Estimation. Mimeo.

  • Danielsson, J. and de Vries, C. (2000). Value-at-Risk and Extreme Returns. Annales d'Economie et de Statistique, 60, 239–270.

    Google Scholar 

  • Danielsson, J., de Vries, C., de Haan, L., and Peng, L. (2001). Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation. Journal of Multivariate Analysis, 76(2), 226–248.

    Article  Google Scholar 

  • Diebold, F.X., Schuermann, T., and Stroughair, J.D. (1998). Pitfalls and opportunities in the use of extreme value theory in risk management. In Refenes, A.-P., Burgess, A., and Moody, J., editors, Decision Technologies for Computational Finance, 3–12. Kluwer Academic Publishers.

  • Dupuis, D.J. (1998). Exceedances over high thresholds: A guide to threshold selection. Extremes, 1(3), 251–261.

    Article  Google Scholar 

  • Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.

    Google Scholar 

  • Embrechts, P., Klüppelberg, C., and Mikosch, T. (1999). Modelling Extremal Events for Insurance and Finance. Applications of Mathematics. Springer. 2nd ed. (1st ed., 1997).

  • Fisher, R. and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of largest or smallest member of a sample. Proceedings of the Cambridge Pthilosophical Society, 24, 180–190.

    Article  Google Scholar 

  • Gençay, R., Selçuk, F., and Ulugülyaĝci, A. (2003a). EVIM: a software package for extreme value analysis in Matlab. Studies in Nonlinear Dynamics and Econometrics, 5, 213–239.

    Article  Google Scholar 

  • Gençay, R. Selçuk, F., and Ulugülyaĝci, A. (2003b). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33, 337–356.

    Article  Google Scholar 

  • Gnedenko, B.V. (1943). Sur la distribution limite du terme d'une série aléatoire. Annals of Mathematics, 44, 423–453.

    Article  Google Scholar 

  • Grimshaw, S. (1993). Computing the Maximum Likelihood Estimates for the Generalized Pareto Distribution to Data. Technometrics, 35(2), 185–191.

    Article  Google Scholar 

  • Hosking, J.R.M. and Wallis, J.R. (1987). Parameter and quantile estimation for the generalised Pareto distribution. Technometrics, 29, 339–349.

    Article  MathSciNet  Google Scholar 

  • Jenkinson, A.F. (1955). The frequency distribution of the annual maximum (minimum) values of meteorological events. Quarterly Journal of the Royal Meteorological Society, 81, 158–172.

    Article  Google Scholar 

  • Jondeau, E. and Rockinger, M. (1999). The tail behavior of stock returns: Emerging versus mature markets. Mimeo, HEC and Banque de France.

    Google Scholar 

  • Koedijk, K.G., Schafgans, M., and de Vries, C. (1990). The Tail Index of Exchange Rate Returns. Journal of International Economics, 29, 93–108.

    Article  Google Scholar 

  • Kuan, C.H. and Webber, N. (1998). Valuing Interest Rate Derivatives Consistent with a Volatility Smile. Working Paper, University of Warwick.

  • Longin, F.M. (1996). The Assymptotic Distribution of Extreme Stock Market Returns. Journal of Business, 69, 383–408.

    Article  Google Scholar 

  • Loretan, M. and Phillips, P. (1994). Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance, 1(2), 211–248.

    Article  Google Scholar 

  • McNeil, A.J. (1999). Extreme value theory for risk managers. In Internal Modelling and CAD II, 93–113. RISK Books.

  • McNeil, A.J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300.

    Article  Google Scholar 

  • Neftci, S.N. (2000). Value at risk calculations, extreme events, and tail estimation. Journal of Derivatives, pages 23–37.

  • Pickands, J.I. (1975). Statistical inference using extreme value order statistics. Annals of Statististics, 3, 119–131.

    Google Scholar 

  • Reiss, R.D. and Thomas, M. (1997). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Rootzèn, H. and Klüppelberg, C. (1999). A single number can't hedge against economic catastrophes. Ambio, 28(6), 550–555.

    Google Scholar 

  • Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer Series in Statistics. Springer.

  • Straetmans, S. (1998). Extreme financial returns and their comovements. Ph.D. Thesis, Tinbergen Institute Research Series, Erasmus University Rotterdam.

  • Tajvidi, N. (1996a). Confidence Intervals and Accuracy Estimation for Heavytailed Generalized Pareto Distribution. Thesis article, Chalmers University of Technology,

  • Tajvidi, N. (1996b). Design and Implementation of Statistical Computations for Generalized Pareto Distributions. Technical Report, Chalmers University of Technology,

  • von Mises, R. (1954). La distribution de la plus grande de n valeurs. In Selected Papers, Volume II, pages 271–294. American Mathematical Society, Providence, RI.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Manfred Gilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilli, M., këllezi, E. An Application of Extreme Value Theory for Measuring Financial Risk. Comput Econ 27, 207–228 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI: