Skip to main content

The impact of city block type on residential burglary: Mexico City as case study

Abstract

Using block level data for Mexico City as case study, this article provides evidence that the type of city block type correlates with the likelihood of residential burglary. We employed five multilevel random intercept models to relate burglary incidents to city block types. We nested the 64,282 city blocks of Mexico City within their corresponding 846 local police quadrants. Our results show that Container-type city block configurations are associated with residential burglary to a greater degree than other physical and social environmental variables. Also, we find that close proximity to mass transit locations is not associated with residential burglary activity. The overall findings of this study describe fundamental dynamics between urban form and burglary.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. We would like to thank one of the reviewers for pointing out that reference to us.

  2. With regard to collinearity, it does not make any difference whether the model is single-level or multi-level. STATA only calculates the Variance Inflation Factor (VIF) statistic for OLS regression. We estimated our model 5 in OLS and the mean VIF was 1.19, with the maximum VIF value of 1.85 for the case of the Schooling variable.

References

  1. Felson, Richard B. 2017. “Routine Activities and Involvement in Violence as Actor, Witness, or Target.” In Crime Opportunity Theories, 113–125. Routledge.

  2. Natarajan, M. (2017). Crime opportunity theories: Routine activity. Rational Choice and Their Variants: Routledge.

    Book  Google Scholar 

  3. Wilcox, P., & Cullen, F. T. (2018). Situational opportunity theories of crime. Annual Review of Criminology, 1(1), 123–148. https://doi.org/10.1146/annurev-criminol-032317-092421.

    Article  Google Scholar 

  4. Wilcox, Pamela, and Kenneth C. Land. 2017. “Social disorganization and criminal opportunity.” Challenging Criminological Theory: The Legacy of Ruth Rosner Kornhauser, Social Disorganization and Criminal Opportunity.

  5. Newman, O. (1972). Defensible space. New York: Macmillan.

  6. Brantingham, P. J., & Brantingham, P. L. (1975). The spatial patterning of burglary. The Howard Journal of Criminal Justice, 14(2), 11–23.

    Article  Google Scholar 

  7. Taylor, Ralph B., and Adele Harrell. 1996. Physical Environment and Crime. US Department of Justice, Office of Justice Programs, National Institute of ….

  8. Zaki, S. A., & Abdullah, J. (2012). Layout design and its effects on burglary. Procedia - Social and Behavioral Sciences, 42, 329–339. https://doi.org/10.1016/j.sbspro.2012.04.197.

    Article  Google Scholar 

  9. Chamberlain, A. W., & Boggess, L. N. (2016). Relative difference and burglary location: Can ecological characteristics of a Burglar’s home neighborhood predict offense location? Journal of Research in Crime and Delinquency, 53(6), 872–906. https://doi.org/10.1177/0022427816647993.

    Article  Google Scholar 

  10. Luo, J. (2017). Multi-Spatiotemporal Patterns of Residential Burglary Crimes in Chicago: 2006–2016. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Gottingen, IV-4(W2), 193–198 https://doi.org/10.5194/isprs-annals-IV-4-W2-193-2017.

    Article  Google Scholar 

  11. Miethe, T. D. (1991). Citizen-based crime control activity and victimization risks: An examination of displacement and free-rider effects*. Criminology, 29(3), 419–439. https://doi.org/10.1111/j.1745-9125.1991.tb01073.x.

    Article  Google Scholar 

  12. Miethe, T. D., & McDowall, D. (1993). Contextual effects in models of criminal victimization. Social Forces, 71(3), 741–759.

    Article  Google Scholar 

  13. Nobles, M. R., Ward, J. T., & Tillyer, R. (2016). The impact of neighborhood context on spatiotemporal patterns of burglary. Journal of Research in Crime and Delinquency, 53(5), 711–740. https://doi.org/10.1177/0022427816647991.

    Article  Google Scholar 

  14. Roncek, D. W., & Maier, P. A. (1991). Bars, Blocks, and Crimes Revisited: Linking the Theory of Routine Activities to the Empiricism of ‘Hot Spots’. Criminology, 29(4), 725–753.

    Article  Google Scholar 

  15. Brantingham, P. L., & Brantingham, P. J. (1993). Environment, routine and situation: Toward a pattern theory of crime. Advances in Criminological Theory, 5(2), 259–294.

    Google Scholar 

  16. Cohen, Lawrence E., and Marcus Felson. 2016. “Social change and crime rate trends: A routine activity approach (1979).” In Classics in Environmental Criminology, 203–232. CRC Press.

  17. Cornish, D. B., & Clarke, R. V. (2003). Opportunities, precipitators and criminal decisions: A reply to Wortley’s critique of situational crime prevention. Crime Prevention Studies, 16, 41–96.

    Google Scholar 

  18. Davies, T., & Johnson, S. D. (2015). Examining the relationship between road structure and burglary risk via quantitative network analysis. Journal of Quantitative Criminology, 31(3), 481–507. https://doi.org/10.1007/s10940-014-9235-4.

    Article  Google Scholar 

  19. Moreto, W. D., Piza, E. L., & Caplan, J. M. (2014). ‘A plague on both your houses?’: Risks, repeats and reconsiderations of urban residential burglary. Justice Quarterly, 31(6), 1102–1126. https://doi.org/10.1080/07418825.2012.754921.

    Article  Google Scholar 

  20. Townsley, M., Birks, D., Bernasco, W., Ruiter, S., Johnson, S. D., White, G., & Baum, S. (2015). Burglar target selection: A cross-National Comparison. Journal of Research in Crime and Delinquency, 52(1), 3–31. https://doi.org/10.1177/0022427814541447.

    Article  Google Scholar 

  21. Townsley, M., Birks, D., Ruiter, S., Bernasco, W., & White, G. (2016). Target selection models with preference variation between offenders. Journal of Quantitative Criminology, 32(2), 283–304. https://doi.org/10.1007/s10940-015-9264-7.

    Article  Google Scholar 

  22. Wortley, Richard, and Lorraine Mazerolle. 2013. Environmental criminology and crime analysis. Routledge.

  23. Siksna, A. (1997). The effects of block size and form in north American and Australian City Centres. Urban Morphology, 1(1), 19–33.

    Google Scholar 

  24. Brantingham, P. L., Brantingham, P. J., Vajihollahi, M., & Wuschke, K. (2009). Crime analysis at multiple scales of aggregation: A topological approach. In D. Weisburd, W. Bernasco, & G. J. N. Bruinsma (Eds.), Putting crime in its place: Units of analysis in geographic criminology (pp. 87–107). New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-09688-9_4.

    Chapter  Google Scholar 

  25. Rountree, P. W., & Land, K. C. (2000). The generalizability of multilevel models of burglary victimization: A Cross-City comparison. Social Science Research, 29(2), 284–305.

    Article  Google Scholar 

  26. Bernasco, W., & Nieuwbeerta, P. (2005). How do residential burglars select target areas?A new approach to the analysis of criminal location choice. The British Journal of Criminology, 45(3), 296–315. https://doi.org/10.1093/bjc/azh070.

    Article  Google Scholar 

  27. Johnson, S. D., & Bowers, K. J. (2004). The stability of space-time clusters of burglary. The British Journal of Criminology, 44(1), 55–65. https://doi.org/10.1093/bjc/44.1.55.

    Article  Google Scholar 

  28. Piquero, A., & Rengert, G. F. (1999). Studying deterrence with active residential burglars. Justice Quarterly, 16(2), 451–471. https://doi.org/10.1080/07418829900094211.

    Article  Google Scholar 

  29. Rengert, G. F., & Wasilchick, J. (2000). Suburban burglary: A tale of two suburbs. Thomas Springfield, IL: Charles C.

    Google Scholar 

  30. Vandeviver, C., Neutens, T., van Daele, S., Geurts, D., & Beken, T. V. (2015). A discrete spatial choice model of burglary target selection at the house-level. Applied Geography, 64(October), 24–34. https://doi.org/10.1016/j.apgeog.2015.08.004.

    Article  Google Scholar 

  31. Chainey, S. P., & da Silva, B. F. A. (2016). Examining the extent of repeat and near repeat victimisation of domestic burglaries in Belo Horizonte, Brazil. Crime Science, 5(1), 1. https://doi.org/10.1186/s40163-016-0049-6.

    Article  Google Scholar 

  32. Glasner, P., Johnson, S. D., & Leitner, M. (2018). A comparative analysis to forecast apartment burglaries in Vienna, Austria, based on repeat and near repeat victimization. Crime Science, 7(1), 9. https://doi.org/10.1186/s40163-018-0083-7.

    Article  Google Scholar 

  33. Vilalta, C. (2010a). Correlates of distance to crime in Mexico City. Global Crime, 11(3), 298–313.

    Article  Google Scholar 

  34. Liu, L., Feng, J., Ren, F., & Xiao, L. (2018). Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China. Cities, 82(December), 10–18. https://doi.org/10.1016/j.cities.2018.04.014.

    Article  Google Scholar 

  35. Gerell, M. (2018). Bus stops and violence, are risky places really risky? European Journal on Criminal Policy and Research, 24(4), 351–371. https://doi.org/10.1007/s10610-018-9382-5.

    Article  Google Scholar 

  36. Ward, J. T., Nobles, M. R., Youstin, T. J., & Cook, C. L. (2014). Placing the neighborhood accessibility–burglary link in social-structural context. Crime & Delinquency, 60(5), 739–763. https://doi.org/10.1177/0011128710364804.

    Article  Google Scholar 

  37. de Oliveira, C. A. (2018). The impact of private precautions on home burglary and robbery in Brazil. Journal of Quantitative Criminology, 34(1), 111–137. https://doi.org/10.1007/s10940-016-9325-6.

  38. Wright, R. T., Decker, S. H., & Geis, G. (2011). Burglars On The Job: Streetlife and Residential Break-Ins. Book, Whole. Boston: Northeastern University Press.

    Google Scholar 

  39. Felson, Marcus, and Lawrence E. Cohen. 2017. “Human Ecology and Crime: A Routine Activity Approach.” In Crime Opportunity Theories, 73–90. Routledge.

  40. Hillier, Bill, and S. C. Shu. 2000. “12. Crime and Urban Layout: The Need for Evidence.” Secure Foundations: Key Issues in Crime Prevention, Crime Reduction and Community Safety 224.

  41. Johnson, S. D., & Bowers, K. J. (2010). Permeability and burglary risk: Are cul-de-sacs safer? Journal of Quantitative Criminology, 26(1), 89–111.

  42. Piza, E. L., & Carter, J. G. (2018). Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Quarterly, 35(5), 842–870. https://doi.org/10.1080/07418825.2017.1342854.

    Article  Google Scholar 

  43. Armitage, R. (2007). Sustainability versus safety: Confusion, conflict and contradiction in designing out crime. In G. Farrell, K. J. Bowers, S. Johnson, & M. Townsley (Eds.), Imagination for crime prevention: Essays in honour of ken Pease (pp. 81–110). Boulder, CO: Lynne Rienner Publishers http://eprints.hud.ac.uk/id/eprint/2698/.

    Google Scholar 

  44. Braga, A. A., & Clarke, R. V. (2014). Explaining high-risk concentrations of crime in the City: Social disorganization, crime opportunities, and important next steps. Journal of Research in Crime and Delinquency, 51(4), 480–498. https://doi.org/10.1177/0022427814521217.

    Article  Google Scholar 

  45. Gerstner, Dominik, Rebecca Wickes, and Dietrich Oberwittler. 2019. “Collective efficacy in Australian and German neighborhoods: Testing cross-cultural measurement equivalence and structural correlates in a multi-level SEM framework.” Social Indicators Research, February, 1–27. https://doi.org/10.1007/s11205-019-02081-4

  46. Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277(5328), 918–924.

    Article  Google Scholar 

  47. Chamberlain, A. W., & Hipp, J. R. (2015). It’s all relative: Concentrated disadvantage within and across neighborhoods and communities, and the consequences for neighborhood crime. Journal of Criminal Justice, 43(6), 431–443. https://doi.org/10.1016/j.jcrimjus.2015.08.004.

    Article  Google Scholar 

  48. Kirk, D. (2008). Unraveling the contextual effects on student suspension and juvenile arrest: An examination of school, neighborhood, and family controls. In SSRN scholarly paper ID 1245811. Rochester, NY: Social Science Research Network https://papers.ssrn.com/abstract=1245811.

    Google Scholar 

  49. Rocque, M., Jennings, W. G., Piquero, A. R., Ozkan, T., & Farrington, D. P. (2017). The importance of school attendance: Findings from the Cambridge study in delinquent development on the life-course effects of truancy. Crime & Delinquency, 63(5), 592–612. https://doi.org/10.1177/0011128716660520.

    Article  Google Scholar 

  50. Sampson, R. J. (1983). Structural density and criminal victimization. Criminology, 21(2), 276–293.

    Article  Google Scholar 

  51. Vilalta, C., & Fondevila, G. (2019). Modeling crime in an uptown neighborhood: The case of Santa Fe in Mexico City. Papers in Applied Geography, 5, 1–12. https://doi.org/10.1080/23754931.2018.1554502.

    Article  Google Scholar 

  52. Waller, Irvin, and Norman Okihiro. 1978. Burglary: The victim and the public. Centre of Criminology, University of Toronto by University of Toronto Press.

  53. Vilalta, C. J., & Fondevila, G. (2013). Perfiles criminales I: Frecuencias y descriptivos. México: CIDE.

    Google Scholar 

  54. Groff, E., Weisburd, D., & Morris, N. A. (2009). Where the action is at places: Examining Spatio-temporal patterns of juvenile crime at places using trajectory analysis and GIS. In D. Weisburd, W. Bernasco, & G. J. N. Bruinsma (Eds.), Putting crime in its place: Units of analysis in geographic criminology (pp. 61–86). New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-09688-9_3.

    Chapter  Google Scholar 

  55. Bernasco, W. (2010). Modeling micro-level crime location choice: Application of the discrete choice framework to crime at places. Journal of Quantitative Criminology, 26(1), 113–138. https://doi.org/10.1007/s10940-009-9086-6.

    Article  Google Scholar 

  56. Brantingham, P., Brantingham, P., & Taylor, W. (2005). Situational crime prevention as a key component in embedded crime prevention. Canadian Journal of Criminology and Criminal Justice, 47(2), 271–292. https://doi.org/10.3138/cjccj.47.2.271.

    Article  Google Scholar 

  57. INEGI. 2015. “Recorrido de Actualización Del Marco Geoestadístico Nacional, El Entorno Urbano y Características de Las Localidades: Manual Del Técnico de Actualización.” Instituto Nacional de Estadística y Geografía (INEGI). http://www.beta.inegi.org.mx/contenidos/proyectos/encotras/cleu/2014/doc/localidad_manual_tecnico.pdf.

  58. Brantingham, P. J., & Brantingham, P. L. (1981). Environmental Criminology. CA: Sage Publications Beverly Hills.

    Google Scholar 

  59. Vilalta, C. (2010b). The spatial dynamics and socioeconomic correlates of drug arrests in Mexico City. Applied Geography, 30(2), 263–270.

    Article  Google Scholar 

  60. Sampson, R. J., & Raudenbush, S. W. (1999). Systematic social observation of public spaces: A new look at disorder in urban neighborhoods. American Journal of Sociology, 105(3), 603–651. https://doi.org/10.1086/210356.

    Article  Google Scholar 

  61. Kubrin, C. E., & Weitzer, R. (2003). Retaliatory homicide: Concentrated disadvantage and neighborhood culture. Social Problems, 50(2), 157–180.

    Article  Google Scholar 

  62. Vilalta, C. (2011). Fear of crime in gated communities and apartment buildings: A comparison of housing types and a test of theories. Journal of Housing and the Built Environment, 26(2), 107–121.

    Article  Google Scholar 

  63. Vilalta, C. (2012). Fear of crime and home security systems. Police Practice and Research, 13(1), 4–14.

    Article  Google Scholar 

  64. Leckie, G., Browne, W., Goldstein, H., Merlo, J., & Austin, P. (2019). Variance partitioning in multilevel models for count data. arXiv preprintarXiv:1911.06888. See: http://arxiv.org/ftp/arxiv/papers/1911/1911.06888.pdf.

  65. Alda, E. (2014). How are police doing in combating crime? An exploratory study of efficiency analysis of the Policía Nacional civil in Guatemala. Policing: An International Journal of Police Strategies & Management, 37(1), 87–107. https://doi.org/10.1108/PIJPSM-02-2013-0010.

    Article  Google Scholar 

  66. Muggah, R., & Tobón, K. A. (2018). Reducing Latin America’s violent hot spots. Aggression and Violent Behavior, 47, 253–256. https://doi.org/10.1016/j.avb.2018.09.003.

    Article  Google Scholar 

  67. Wood, J. D., Taylor, C. J., Groff, E. R., & Ratcliffe, J. H. (2015). Aligning policing and public health promotion: Insights from the world of foot patrol. Police Practice & Research: An International Journal, 16(3), 211–223. https://doi.org/10.1080/15614263.2013.846982.

    Article  Google Scholar 

  68. Vilalta, Carlos, José Castillo, and Juan Torres. 2016. “Violent Crime in Latin American Cities.” 474. Discussion Paper. Washington, D.C: Inter-American Development Bank.

  69. Inegi. (2018). Encuesta Nacional de Victimización y Percepción Sobre Seguridad Pública 2016 (Envipe). Inegi México: Tabulados Básicos.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. Vilalta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Estimation sample descriptive statistics for city blocks (level 1) variables (n = 64,282)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilalta, C.J., Sanchez, T. & Fondevila, G. The impact of city block type on residential burglary: Mexico City as case study. Crime Law Soc Change 75, 73–88 (2021). https://doi.org/10.1007/s10611-020-09920-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10611-020-09920-3