Skip to main content

Advertisement

Log in

Predictive Policing as a New Tool for Law Enforcement? Recent Developments and Challenges

  • Published:
European Journal on Criminal Policy and Research Aims and scope Submit manuscript

Abstract

Decision-making processes are increasingly based on intelligence gained from ‘big data’, i.e., extensive but complex datasets. This evolution of analyzing complex data using methods aimed at prediction is also emerging within the field of quantitative criminology. In the context of crime analysis, the large amount of crime data available can be considered an example of big data, which could inform us about current and upcoming crime trends and patterns. A recent development in the analysis of this kind of data is predictive policing, which uses advanced statistical methods to make the most of these data to gain useable new insights and information, allowing police services to predict and anticipate future crime events. This article presents the results of a literature review, supplemented with key informant interviews, to give insight into what predictive policing is, how it can be used and implemented to anticipate crime, and what is known about its effectiveness. It also gives an overview of the currently known applications of predictive policing and their main characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Azavea. (2015). Hunchlab Under the Hood. Version 1.1.0. http://cdn.azavea.com/pdfs/hunchlab/HunchLab-Under-the-Hood.pdf. Accessed 15 August 2016.

  • Bachner, J. (2013). Predictive Policing: Preventing Crime with Data and Analytics. Report for the IBM Center for the business of government, Improving Performance Series, John Hopkins University. http://www.businessofgovernment.org/sites/default/files/Predictive%20Policing.pdf. Accessed 15 July 2015.

  • Brantingham, P. L. (2010). Crime pattern theory. In B. S. Fisher & S. P. Lab (Eds.), Encyclopedia of victimology and crime prevention (pp. 192–198). Thousand Oaks, CA: SAGE.

  • Brantingham, P. J. (2013). The theory of target search. In F. T. Cullen & P. Wilcox (Eds.), The Oxford handbook of criminological theory. Oxford: Oxford University Press.

    Google Scholar 

  • Berk, R., Sherman, L., Barnes, G., Kurtz, E., & Ahlman, L. (2009). Forecasting murder within a population of probationers and parolees: A high stakes application of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 191–211. https://doi.org/10.1111/j.1467-985X.2008.00556.x.

    Article  Google Scholar 

  • Bowers, K. J., & Shane, D. J. (2005). Domestic burglary repeats and space-time clusters: The dimensions of risk. European Journal of Criminology, 2(1), 67–92.

    Article  Google Scholar 

  • Bowers, K. J., Johnson, S. H., & Pease, K. (2004). Prospective hot-spotting: The future of crime mapping? British Journal of Criminology, 44, 641–658.

    Article  Google Scholar 

  • Byrne, J., & Marx, G. (2011). Technological innovations in crime prevention and policing. A review of the research on implementation and impact. Cahiers Politiestudies, 3(20), 17–40.

    Google Scholar 

  • Caplan, J. M., & Kennedy, L. W. (2010). Risk terrain modeling manual: Theoretical framework and technical steps of spatial risk assessment for crime analysis. New Jersey: Rutgers University.

    Google Scholar 

  • Chan, J., & Moses, L. B. (2015). Is big data challenging criminology? Theoretical Criminology. https://doi.org/10.1177/1362480615586614.

  • Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 44(4), 588–608.

    Article  Google Scholar 

  • Cornish, D., & Clarke, R. (1987). Understanding crime displacement: An application of rational choice theory. Criminology, 25(4), 933–947.

    Article  Google Scholar 

  • De Graauw, J.S. (2014). Tijdruimtelijk voorspellen van criminele incidenten. Master Thesis, Vrije Universiteit Amsterdam, Netherlands.

  • Eck, J. E., & Weisburd, D. L. (2015). Crime places in crime theory. Crime and Place: Crime Prevention Studies, 4, 1–33.

    Google Scholar 

  • Ferguson, A. G. (2012). Predictive policing and reasonable suspicion. Emory Law Journal, 62, 259–325.

    Google Scholar 

  • Glasner, P. (2015). CriPa – Crime predictive analysis. In 2015 Esri User Conference, San Diego, California, US, 18–24 July. http://proceedings.esri.com/library/userconf/proc15/papers/161_376.pdf. Accessed May 2016.

  • Gorr, W., & Olligschlaeger, A. (2002). Crime hot spot forecasting: Modeling and comparative evaluation. Rockville, MD: National Criminal Justice Reference System (NCJRS) Retrieved from: https://www.ncjrs.gov/pdffiles1/nij/grants/195167.pdf.

    Google Scholar 

  • Groff, E. R., & La Vigne, N. G. (2002). Forecasting the future of predictive crime mapping. Crime Prevention Studies, 13, 29–57.

    Google Scholar 

  • Haykin, S. (2009). Neural networks and learning machines (3rd ed.). New York: Pearson.

    Google Scholar 

  • Hitachi. (2015). Hitachi Data Systems unveils new advancements in predictive policing to support safer, smarter societies (Press release 28 September 2015). https://www.hds.com/corporate/press-analyst-center/press-releases/2015/gl150928.html. Accessed 30 January 2016.

  • Hollywood, J. S., Smith, S. C., Price, C. C., McInnis, B., & Perry, W. L. (2012). Predictive policing: What it is, what it Isn’t, and where it can be useful. Police Chief, 81(4), 30–35.

    Google Scholar 

  • Hunt, P., Saunders, J. & Hollywood, J.S. (2014). Evaluation of the Shreveport predictive policing experiment, RAND Research Reports, RAND Corporation. http://www.rand.org/pubs/research_reports/RR531.htm. Accessed 15 July 2015.

  • IBM. (n.d.). Predictive analytics for crime prediction and prevention: Helping police departments know better. http://www-01.ibm.com/software/analytics/spss/11/na/cpp/. Accessed 30 January 2016.

  • IfmPt. (n.d.). PreCobs: Near repeat prediction method: Predictive Policing made in Germany. Available at: http://www.ifmpt.de. Accessed 15 Augustus 2016.

  • Johnson, S. D., & Bowers, K. J. (2004a). The burglary as clue to the future: The beginnings of prospective hot-spotting. European Journal of Criminology, 1(2), 237–255.

    Article  Google Scholar 

  • Johnson, S. D., & Bowers, K. J. (2004b). The stability of space-time clusters of burglary. British Journal of Criminology, 44, 55–65.

    Article  Google Scholar 

  • Kinney, J. B., Brantingham, P. L., Wuschke, K., Kirk, M. G., & Brantingham, P. J. (2008). Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment, 34(1), 62–74.

    Article  Google Scholar 

  • Kitchin, R. (2014a). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 1–12.

    Article  Google Scholar 

  • Kitchin, R. (2014b). The data revolution: Big data, open data, data infrastructures and their consequences. London: Sage.

  • Lum, C., Koper, C. S., & Telep, C. W. (2011). The evidence-based policing matrix. Journal of Experimental Criminology, 7, 3–26.

    Article  Google Scholar 

  • McCue, C. (2015). Data mining and predictive analysis: Intelligence gathering and crime analysis (Second ed.). Oxford: Elsevier.

  • Mohler, G. O., Short, M. B., Brantingham, P. H., Schoenberg, F. P., & Tita, G. E. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100–108.

    Article  Google Scholar 

  • Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L., & Brantingham, J. (2016). Randomized controlled field trials of predictive policing. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2015.1077710.

  • Moses, L. B., & Chan, J. (2016). Algorithmic prediction in policing: assumptions, evaluation and accountability. Policing and Society. https://doi.org/10.1080/10439463.2016.1253695.

  • Perry, W. L., McInnis, B., Price, C. C., Smith, S. C., & Hollywood, J. S. (2013). Predictive policing: The role of crime forecasting in law enforcement operations. RAND Research Report: RAND Corporation http://www.rand.org/content/dam/rand/pubs/research_reports/RR200/RR233/RAND_RR233.pdf . Accessed 15 July 2015.

    Book  Google Scholar 

  • Ratcliffe, J. (2010). Crime mapping: Spatial and temporal challenges. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology. New York: Springer.

  • Ratcliffe, J. (2014). What is the future… of predictive policing? Translational Criminology, 6, 4–5.

    Google Scholar 

  • Ratcliffe, J. (2016). Intelligence-led policing (2nd ed.). London: Routledge.

    Google Scholar 

  • Ratcliffe, J., & Rengert, G. F. (2008). Near-repeat patterns in Philadelphia shootings. Security Journal, 21, 58–76. https://doi.org/10.1057/palgrave.sj.8350068.

    Article  Google Scholar 

  • Rest, J. (2014). Berliner Poilzei will mit Software auf Verbrecherjagd gehen. Berliner Zeitung, 1 December.

  • Rivero, D. (2015). Microsoft is developing an app that can predict crimes of the future. Fusion, 16 December. http://fusion.net/story/245022/microsoft-predict-prison-recidivism/. Accessed 30 January 2016.

  • Rummens, A., Hardyns, W., & Pauwels, P. (2017). The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Applied Journal of Geography https://doi.org/10.1016/j.apgeog.2017.06.011.

  • Santos, R. B. (2014). The effectiveness of crime analysis for crime reduction: Cure or diagnosis? Journal of Contemporary Criminal Justice, 30(2), 147–168.

    Article  Google Scholar 

  • Short, M. B., D’Orsogna, M. R., Brantingham, P. J., & Tita, G. E. (2009). Measuring and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology, 25(3), 325–339.

    Article  Google Scholar 

  • Short, M. B., D’Orsogna, M. R., Pasour, V. B., Bertozzi, A. L., & Chaves, L. B. (2008). A statistical model of criminal behavior. Mathematical Models and Methods in Applied Sciences, 18(Suppl), 1249–1267.

    Article  Google Scholar 

  • Siegel, E. (2013). Predictive analytics: The power to predict who will click, buy, lie, or die. Hoboken, New Jersey: John Wiley & Sons.

    Google Scholar 

  • Tchekmedyian, A. (2016). Police push back against using crime-prediction technology to deploy officers. Los Angeles Times, 4 October.

  • Telep, C.W. (2009). Police interventions to reduce violent crime: A review of rigorous research. In Reducing violent crimes at places: The research evidence, Second Congressional Briefing, Fairfax, Virigina, US, 9 February 2009. http://cebcp.org/wp-content/CB20091/Telep. Accessed 15 July 2015.

  • Temple University. (n.d.). The Philadelphia predictive policing experiment. http://www.cla.temple.edu/cj/center-for-security-and-crime-science/the-philadelphia-predictive-policing-experiment/. Accessed 30 August 2016.

  • Townsley, M., Homel, R., & Chaseling, J. (2003). Infectious burglaries: A test of the near repeat hypothesis. British Journal of Criminology, 43, 615–633.

    Article  Google Scholar 

  • Van Brakel, R., & De Hert, P. (2011). Policing, surveillance and law in a pre-crime society: Understanding the consequences of technology based strategies. Cahiers Politiestudies, 3(20), 163–192.

    Google Scholar 

  • Wang, T., Rudin, C., Wagner, D. & Sevieri, R. (2013). Learning to detect patterns of crime. In proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases, Prague, Czech Republic, 23-27 September 2013. http://web.mit.edu/rudin/www/docs/WangRuWaSeECML13.pdf. Accessed 15 July 2015.

  • Wang, X. & Brown, D.E. (2012). The spatio-temporal modeling for criminal incidents. Security Informatics, 1(2), https://doi.org/10.1186/2190-8532-1-2.

  • Wang, X., Brown, D.E. & Gerber, M.S. (2012). Spatio-temporal modeling of criminal incidents using geographic, demographic and twitter-derived information. In 2012 I.E. international conference on intelligence and security informatics, Washington DC, US. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6284088. Accessed 15 July 2015.

  • Weisburd, D., Groff, E. R., & Yang, S. (2012). The criminology of place: Street segments and our understanding of the crime problem. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Willems, D. (2015). CAS: Criminaliteits Anticipatie Systeem: Predictive policing in Amsterdam. In 1st international workshop on planning of emergency services, theory and practice, Amsterdam, Netherlands, 25-27 June 2014.http://event.cwi.nl/mtw2014/media/files/Willems,%20Dick%20-%20CAS%20Crime%20anticipation%20system%20_%20predicting%20policing%20in%20Amsterdam.pdf. Accessed 15 July 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Hardyns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardyns, W., Rummens, A. Predictive Policing as a New Tool for Law Enforcement? Recent Developments and Challenges. Eur J Crim Policy Res 24, 201–218 (2018). https://doi.org/10.1007/s10610-017-9361-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10610-017-9361-2

Keywords

Navigation