Genomic Big Data and Privacy: Challenges and Opportunities for Precision Medicine

  • Julie Frizzo-Barker
  • Peter A. Chow-White
  • Anita Charters
  • Dung Ha
Article

Abstract

Genome science is rapidly shifting from research labs and biobanks to the clinical setting. The resulting genomic big data, or large-scale networked genetic material, is a disruptive technology. On one hand, clinical genomics advances life-saving innovation through precision medicine. On the other, the digital databases they are built upon raise new concerns for informational risk to personal privacy. While a traditional biomedical approach focuses on risks and benefits to the human body, our socio-technical analysis sheds lights on the emerging terrain of the human body as digital code. In this paper, we analyze emerging issues related to clinical genomics based on a 3-year collaborative clinical research project to develop a genomic test for Acute Myeloid Leukemia (AML) cancer in British Columbia (BC), the first of its kind in Canada. We found the most pressing issues for genomic researchers and clinicians were challenges around informed consent, return of results and return of incidental findings. In light of technological advances and the emerging context of networked privacy, we outline several recommendations for best practices in diffusing clinical genomics to the healthcare system.

Keywords

Big data Databases DNA Genomics Healthcare Precision medicine Privacy Informational risk Information technology 

References

  1. 1000 Genomes. (2015). Retrieved June 14, 2015, from http://www.1000genomes.org/data
  2. Ackerman, Mark S. (2000). The Intellectual Challenge of CSCW: The Gap between Social Requirements and Technical Feasibility. Human–Computer Interaction, vol. 15, nos. 2–3, 179–203.Google Scholar
  3. Allyse, Megan, Katrina Karkazis, Sandra Soo Jin Lee, Sara L. Tobin,  Henry T. Greely, Mildred K. Cho, and David Magnus (2012). Informational Risk, Institutional Review, and Autonomy in the Proposed Changes to the Common Rule. IRB: Ethics and Human Research, vol. 34, no. 3, pp. 17–19.Google Scholar
  4. Bennett, Colin J, Kevin D. Haggerty, David Lyon, and Valerie Steeves (2014). Transparent Lives: Surveillance in Canada. Edmonton, AB: Athabasca University Press.Google Scholar
  5. Bietz, Matthew J, Eric P. S. Baumer, and Charlotte P. Lee (2010). Synergizing in Cyberinfrastructure Development. Computer Supported Cooperative Work (CSCW), vol. 19, nos. 3–4, 245–281.Google Scholar
  6. Blumenthal-Barby, Jennifer S., Amy L. McGuire, Robert C. Green, and Peter A. Ubel (2015). How behavioral economics can help to avoid “The last mile problem” in whole genome sequencing. Genome Medicine, vol. 7, no. 1, art. 3.Google Scholar
  7. Boczkowski, Pablo, and Leah A. Lievrouw (2008). Bridging STS and communication studies: Scholarship on media and information technologies. In Edward J. Hackett, O. Amsterdamska, M. Lynch, & J. Wajcman (Eds.), The Handbook of Science and Technology Studies (pp. 949–977). Cambridge, MA: MIT Press.Google Scholar
  8. Bowker, Geoffrey C. (2005). Memory practices in the sciences. Cambridge, MA: MIT Press.Google Scholar
  9. Bowker, Geoffrey C., and Susan Leigh Star (2000). Sorting Things Out: Classification and Its Consequences. Cambridge, MA: MIT Press.Google Scholar
  10. Boyd, Danah. (2010). Making Sense of Privacy and Publicity. http://www.danah.org/papers/talks/2010/SXSW2010.html . accessed 10 March 2015.
  11. Boyd, Danah. (2012). Networked Privacy. Surveillance & Society, vol. 10, nos. 3/4, pp. 348–350.Google Scholar
  12. Burn-Murdoch, John (2012, Oct. 26). Big data: what is it and how can it help? http://www.theguardian.com/news/datablog/2012/oct/26/big-data-what-is-it-examples, accessed 12 March, 2015.
  13. Bush, William S., and Jason H. Moore (2012). Chapter 11: Genome-Wide Association Studies. PLoS Comput Biol, vol. 8, no. 12, e1002822.Google Scholar
  14. Castells, Manuel (2000). The Rise of the Network Society: The Information Age: Economy, Society, and Culture. Malden, MA: Blackwell.Google Scholar
  15. Caulfield, Timothy A., and Bartha Maria Knoppers (2010). Consent, privacy & research biobanks (Policy Brief No.1). Genome Canada. http://www.genomecanada.ca/medias/pdf/en/GPS-Policy-Directions-Brief.pdf
  16. CDC, Public Health Genomics at. (2010). Genomics|Genetic Testing|ACCE. http://www.cdc.gov/genomics/gtesting/ACCE/index.htm, accessed 14 March, 2015.
  17. Check Hayden, Erika (2013). Privacy loophole found in genetic databases. Nature News. Google Scholar
  18. Chow-White, Peter A. and Miguel García-Sancho (2012). Bidirectional Shaping and Spaces of Convergence Interactions between Biology and Computing from the First DNA Sequencers to Global Genome Databases. Science, Technology & Human Values, vol. 37, no. 1, 124–164. 10.1177/0162243910397969
  19. Chow-White, Peter A. and Sandy Green, Jr. (2013). Data Mining Difference in the Age of Big Data: Communication and the Social Shaping of Genome Technologies from 1998 to 2007. International Journal of Communication, 7(0), 28. Retrieved from http://ijoc.org/index.php/ijoc/article/view/1459, accessed 17 June, 2014.
  20. Collins, Francis S., Michael Morgan, and Aristides Patrinos (2003). The Human Genome Project: Lessons from Large-Scale Biology. Science, vol. 300, no. 5617, pp. 286–290.Google Scholar
  21. Condit, Celeste M. (2007). How Culture and Science Make Race “Genetic”: Motives and Strategies for Discrete Categorization of the Continuous and Heterogeneous. Literature and Medicine, vol. 26, no. 1, pp. 240–268.Google Scholar
  22. Condit, Celeste Michelle, Roxanne L. Parrott, Tina M. Harris, John Lynch, and Tasha Dubriwny (2004). The Role of “Genetics” in Popular Understandings of Race in the United States. Public Understanding of Science, vol. 13, no. 3, pp. 249–272.Google Scholar
  23. Contreras, Jorge L. (2010). Bermuda’s Legacy: Policy, Patents and the Design of the Genome Commons (SSRN Scholarly Paper No. ID 1667659). Rochester, NY: Social Science Research Network. http://papers.ssrn.com/abstract=1667659
  24. CTV (2015). Blood pressure drug shrinks cancer in “miracle” clinical trial. http://bc.ctvnews.ca/blood-pressure-drug-shrinks-cancer-in-miracle-clinical-trial-1.2271586, accessed 13 March, 2015.
  25. Friedman, Jan (2013). The UBC Medical Curriculum and the Genomic Revolution. University of British Columbia Medical Journal, vol. 4, no. 2. www.ubcmj.com/pdf/ubcmj_4_2_2013_6-8.pdf
  26. Frizzo-Barker, Julie, and Peter A. Chow-White (2014). From Patients to Petabytes: Genomic Big Data, Privacy, and Informational Risk. Canadian Journal of Communication, vol. 39, no. 4.Google Scholar
  27. Fuchs, Christian (2013). Social Media: A Critical Introduction. London: SAGE.Google Scholar
  28. Gandy, Oscar H. (1993). The Panoptic Sort: A Political Economy of Personal Information. Boulder, CO: HarperCollins Canada.Google Scholar
  29. Gavison, Ruth. (1980). Privacy and the Limits of Law. The Yale Law Journal, vol. 89, no. 3, pp. 421–471.CrossRefGoogle Scholar
  30. Gerlach, Neil, and Sheryl N. Hamilton (2005). From Mad Scientist to Bad Scientist: Richard Seed as Biogovernmental Event. Communication Theory, vol. 15, no. 1, pp. 78–99.Google Scholar
  31. Gibson, Elaine, Kevin Brazil, Michael D. Coughlin, Claudia Emerson, Francois Fournier, Lisa Schwartz, Karen V. Szala-Meneok, Karen M. Weisbaum, and Donald J. Willison (2008). Who’s minding the shop? The role of Canadian research ethics boards in the creation and uses of registries and biobanks. BMC Medical Ethics, vol. 9, no. 1, art. 17.Google Scholar
  32. Gordon, Dan, and Aditya Pai (2012). BIG data, BIG opportunity. Canadian Healthcare Manager, vol. 1, no. 2, pp. 25–27.Google Scholar
  33. Gulland, Anne. (2010). Project to decode genomes in cancer samples promises new treatments. BMJ, vol. 340, c2149.CrossRefGoogle Scholar
  34. Hackett, Edward J. (2008). The Handbook of Science and Technology Studies. Cambridge, MA: MIT Press.Google Scholar
  35. HapMap Project. (2015). http://hapmap.ncbi.nlm.nih.gov/, accessed 14 June, 2015.
  36. Hockings, Edward, and Coyne, Lewis (2015). Privacy and the 100,000 Genome Project. The Guardian. Retrieved from https://www.theguardian.com/science/political-science/2015/mar/10/privacy-and-the-100000-genome-project, accessed 19 Febuary 2015.
  37. Homer, Nils, Szabolcs Szelinger, Margot Redman,  David Duggan,  Waibhav Tembe,  Jill Muehling,  John V. Pearson,  Dietrich A. Stephan,  Stanley F. Nelson, and David W. Craig (2008). Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays. PLoS Genetics, vol. 4, no. 8.Google Scholar
  38. Hudson, Kathy. L. (2011). Genomics, Health Care, and Society. New England Journal of Medicine, vol. 365, no. 11, pp. 1033–1041.Google Scholar
  39. IBM (2012). What is big data? http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html, accessed 12 March 2015.
  40. ICGC: International Cancer Genomics Consortium Data Portal (2015). https://dcc.icgc.org/, accessed 14 June 2015.
  41. Jirotka, Marina, Charlotte P. Lee, and Gary M. Olson (2013). Supporting Scientific Collaboration: Methods, Tools and Concepts. Computer Supported Cooperative Work (CSCW), vol. 22, nos. 4–6, pp. 667–715.Google Scholar
  42. Jurgenson, Nathan (2012). When Atoms Meet Bits: Social Media, the Mobile Web and Augmented Revolution. Future Internet, vol. 4, no. 1, pp. 83–91.CrossRefGoogle Scholar
  43. Kaye, Jane (2012). The Tension Between Data Sharing and the Protection of Privacy in Genomics Research. Annual Review of Genomics and Human Genetics, vol. 13, no. 1, pp. 415–431.CrossRefGoogle Scholar
  44. Kitchin, Rob (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences (1st edition). Thousand Oaks, CA: SAGE Publications Ltd.Google Scholar
  45. Kosseim, Patricia, Edward S. Dove, Carman Baggaley, Eric M. Meslin, Fred H. Cate, Jane Kaye, Jennifer R- Harris, and Bartha M. Knoppers (2014). Building a data sharing model for global genomic research. Genome Biology, vol. 15, no. 8.Google Scholar
  46. Latour, Bruno. (2007). Beware your imagination leaves digital traces. Times Higher Literary Supplement. http://www.bruno-latour.fr/node/245
  47. Lévesque, Emmanuelle, Yann Joly, and Jacques Simard (2011). Return of Research Results: General Principles and International Perspectives. The Journal of Law, Medicine & Ethics, vol. 39, no. 4, pp. 583–592.Google Scholar
  48. Libert, Tim (2014). Privacy Implications of Health Information Seeking on the Web (SSRN Scholarly Paper No. ID 2423006). Rochester, NY: Social Science Research Network. http://papers.ssrn.com/abstract=2423006
  49. Lunshof, Jeantine E., Ruth Chadwick, Daniel B. Vorhaus, and George M. Church. (2008). From genetic privacy to open consent. Nature Reviews Genetics, vol. 9, no. 5, pp. 406–411.Google Scholar
  50. Lyon, David (2005). Surveillance as social sorting: computer codes and mobile bodies. In Surveillance as Social Sorting: Privacy, Risk and Automated Discrimination (pp. 13–30). London: Routledge.Google Scholar
  51. MacKenzie, Donald, and Judy Wajcman (Eds.). (1999). The Social Shaping of Technology (2nd edition). Buckingham Eng.; Philadelphia: McGraw Hill Education / Open University.Google Scholar
  52. Manovich, Lev (2001). The Language of New Media. Cambridge, MA: MIT Press.Google Scholar
  53. Marris, Emma (2005). Free genome databases finally defeat Celera. Nature, vol. 435, no. 7038, 6–6.CrossRefGoogle Scholar
  54. Mayer-Schönberger, Viktor, and  Kenneth Cukier (2013). Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Eamon Dolan/Houghton Mifflin Harcourt.Google Scholar
  55. McLuhan, Marshall (1964). Understanding Media: The extensions of man. New York, NY: McGraw Hill.Google Scholar
  56. Nissenbaum, Helen F. (2010). Privacy in context: technology, policy, and the integrity of social life. Stanford, CA: Stanford Law Books.Google Scholar
  57. Pálsson, Gisli and Paul Rabinow (2001). The Icelandic genome debate. Trends in Biotechnology, vol. 19, no. 5, pp. 166–171. doi:10.1016/S0167-7799(01)01607-9
  58. Pasquale, Frank (2015a). The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge, MA: Harvard University Press.Google Scholar
  59. Pollack, Andrew (2009, August 18). DNA Evidence Can Be Fabricated, Scientists Show. The New York Times. http://www.nytimes.com/2009/08/18/science/18dna.html
  60. Pollack, Andrew (2011, November 30). DNA Sequencing Caught in Deluge of Data. The New York Times. http://www.nytimes.com/2011/12/01/business/dna-sequencing-caught-in-deluge-of-data.html
  61. Pool, Ithiel de Sola (1983). Technologies of freedom. Cambridge, MA: Belknap Press.Google Scholar
  62. Presidential Commission for the Study of Bioethical Issues (PCSB) (2012). Privacy and Progress in Whole Genome Sequencing. http://bioethics.gov/sites/default/files/PrivacyProgress508_1.pdf
  63. Presidential Commission for the Study of Bioethical Issues (PCSB) (2013). Anticipate and Communicate: Ethical Management of Incidental and Secondary Findings in the Clinical, Research and Direct-to-Consumer Contexts. bioethics.gov/sites/default/files/FINALAnticipateCommunicate_PCSBI_0.pdfGoogle Scholar
  64. Rainie, Lee (2015). Networked Privacy in the Age of Surveillance, Sousveillance, Coveillance. http://www.pewinternet.org/2015/01/23/networked-privacy-in-the-age-of-surveillance-sousveillance-coveillance/, accessed 2 February, 2015.
  65. Regalado, Antonio (2015 2–18). Networks of Genome Data Will Transform Medicine. http://www.technologyreview.com/featuredstory/535016/internet-of-dna/ , accessed 8 March, 2015.
  66. Rukovets, Olga (2014). FDA to 23andMe: “Stop Marketing Genetic Tests.” Neurology Today, vol. 14, no. 2, pp. 1,11–14.Google Scholar
  67. Schadt, Eric E., Sangsoon Woo, and Ke Hao (2012). Bayesian method to predict individual SNP genotypes from gene expression data. Nature Genetics, vol. 44, no. 5, pp. 603–608.Google Scholar
  68. Schuurman, Nadine, and Ellen Balka (2008). alt.metadata.health: Ontological Context for Data Use and Integration. Computer Supported Cooperative Work (CSCW), vol. 18, no. 1, pp. 83–108.Google Scholar
  69. Solove, Daniel J. (2008). Understanding privacy. Cambridge, Mass: Harvard University Press.Google Scholar
  70. Star, Susan Leigh (1999). The Ethnography of Infrastructure. American Behavioral Scientist, vol. 43, no. 3, pp. 377–391.Google Scholar
  71. Strasser, Bruno J. (2012). Data-driven sciences: From wonder cabinets to electronic databases. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, vol. 43, no. 1, pp. 85–87.Google Scholar
  72. Thacker, Eugene (2004). Biomedia (1st edition). Minneapolis: Univ. of Minnesota Press.Google Scholar
  73. Thacker, Eugene (2005). The Global Genome: Biotechnology, Politics, and Culture (1st edition). Cambridge, Mass: The MIT Press.Google Scholar
  74. Wei, Sisi, and Charles Ornstein (2015). Over 1,100 Health Data Breaches, but Few Fines. ProPublica, 27 February 2015 https://projects.propublica.org/graphics/healthcare-data-breaches, accessed 7 March, 2015.
  75. Williams, Raymond (1975). Television: Technology and cultural form. New York, NY: Schocken Books.Google Scholar
  76. Wright, Caroline, Hilary Burton, Alison Hall, Sowmiya Moorthie, Anna Pokorska-Bocci, Gurdeep Sagoo, Simon Sanderson, and Rosalind Skinner (2011). Next steps in the sequence: The implications of whole genome sequencing for health in the UK. PHG Foundation. http://www.phgfoundation.org/reports/10364/.
  77. Zhao, Jun, Oscar Corcho, Paolo Missier, Khalid Belhajjame, David Newmann,David de  Roure and Carole A. Goble (2011). eScience. In John Domingue, Dieter Fensel, and James A. Hendler (Eds.), Handbook of Semantic Web Technologies (pp. 701–736). Springer Berlin Heidelberg.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Julie Frizzo-Barker
    • 1
  • Peter A. Chow-White
    • 1
  • Anita Charters
    • 1
  • Dung Ha
    • 1
  1. 1.School of CommunicationSimon Fraser UniversityBurnabyCanada

Personalised recommendations