Discovering Social Networks from Event Logs

Abstract

Process mining techniques allow for the discovery of knowledge based on so-called “event logs”, i.e., a log recording the execution of activities in some business process. Many information systems provide such logs, e.g., most WFM, ERP, CRM, SCM, and B2B systems record transactions in a systematic way. Process mining techniques typically focus on performance and control-flow issues. However, event logs typically also log the performer, e.g., the person initiating or completing some activity. This paper focuses on mining social networks using this information. For example, it is possible to build a social network based on the hand-over of work from one performer to the next. By combining concepts from workflow management and social network analysis, it is possible to discover and analyze social networks. This paper defines metrics, presents a tool, and applies these to a real event log within the setting of a large Dutch organization.

This is a preview of subscription content, access via your institution.

References

  1. Agrawal, R., D. Gunopulos and F. Leymann (1998): Mining Process Models from Workflow Logs. Sixth International Conference on Extending Database Technology, pp. 469–483.

  2. Bavelas A. (1948) A Mathematical Model for Group Structures. Human Organization 7:16–30

    Google Scholar 

  3. Begole, J., Tang J., Smith R. and Yankelovich N. (2002): Work Rhythms: Analyzing Visualizations of Awareness Histories of Distributed Groups. In: Neuwirth C., Rodden T. (eds) Proceedings of the 2002 ACM conference on Computer Supported Cooperative Work. ACM Press, New York, NY, USA, pp. 334–343

    Chapter  Google Scholar 

  4. Bernard H., Killworth P., McCarty C., Shelley G. and Robinson S. (1990): Comparing Four Different Methods for Measuring Personal Social Networks. Social Networks 12:179–216

    Article  Google Scholar 

  5. Bonacich P. (1987): Power and Centrality: A family of Measures. American Journal of Sociology 92: 1170–1182

    Article  Google Scholar 

  6. Burt R. and Minor M. (1983) Applied Network Analysis: A Methodological Introduction. Sage, Newbury Park CA: Sage http://www.cbpweb.nl/index.htm.

  7. Clausen, S.E. (1998): Applied Correspondence Analysis: An Introduction, Sage Publications.

  8. CBP n.d., College Bescherming Persoonsgegevens (CBP; Dutch Data Protection Authority)

  9. Cook J. and Wolf A. (1998): Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3): 215–249

    Article  Google Scholar 

  10. Culotta, A., R. Bekkerman and A. McCallum (2004): Extracting Social Networks and Contact Information from Email and the Web. Proceedings of the First Conference on Email and Anti-Spam (CEAS).

  11. Ellis C. (2000): An Evaluation Framework for Collaborative Systems. Technical Report, CU-CS-901-00, University of Colorado, Department of Computer Science, Boulder, USA

    Google Scholar 

  12. Ellis C., Gibbs S. and Rein G. (1991) Groupware: Some issues and experiences. Communications of the ACM 34(1): 38–58

    Article  Google Scholar 

  13. Farnham, S., S. Kelly, W. Portnoy and J. Schwartz (2004a): Wallop: Designing Social Software for Co-Located Social Networks. Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04). CA: IEEE Computer Society Press, Los Alamitos

  14. Farnham, S., W. Portnoy and A. Turski (2004b): Using Email Mailing Lists to Approximate and Explore Corporate Social Networks, In D. McDonald, S. Farnham and D. Fisher (eds.): Proceedings of the CSCW’04 Workshop on Social Networks.

  15. Feldman M. (1987): Electronic Mail and Weak Ties in Organizations. Office: Technology and People 3: 83–101

    Article  Google Scholar 

  16. Fischer L. (eds) (2001): Workflow Handbook 2001, Workflow Management Coalition. Future Strategies, Lighthouse Point, Florida

    Google Scholar 

  17. Fisher D. and Dourish P. (2004): Social and Temporal Structures in Everyday Collaboration. In: Dykstra-Erickson E., Tscheligi M. (eds) Proceedings of the 2004 Conference on Human Factors in Computing Systems (CHI2004). ACM Press, New York, NY, USA, pp. 551–558

    Chapter  Google Scholar 

  18. Freeman L. (1977): A Set of Measures of Centrality Based on Betweenness. Sociometry 40: 35–41

    Article  Google Scholar 

  19. Freeman L. (1979) Centrality in Social Networks: Conceptual Clarification. Social Networks 1: 215–239

    Article  Google Scholar 

  20. Gauch, H.G. (1982): Data Analysis in Community and Landscape Ecology, Cambridge University Press.

  21. Grigori, D., F. Casati, U. Dayal and M. Shan (2001): Improving Business Process Quality through Exception Understanding, Prediction, and Prevention. In P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao and R. Snodgrass (eds.): Proceedings of 27th International Conference on Very Large Data Bases (VLDB’01), Morgan Kaufmann, pp. 159–168.

  22. Herbst, J. (2000): A Machine Learning Approach to Workflow Management. Proceedings 11th European Conference on Machine Learning, Vol. 1810 of Lecture Notes in Computer Science. Berlin: Springer-Verlag, pp. 183–194

  23. Herbst, J. (2001): Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-Modellen, PhD thesis, Universität Ulm.

  24. Hulsman B. and Ippel P. (1994): Personeelsinformatiesystemen: De Wet Persoonsregistraties toegepast. Registratiekamer, The Hague

    Google Scholar 

  25. IDS Scheer (2002): ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saarbruecken, Gemany, http://www.ids-scheer.com.

  26. Jablonski S. and Bussler C. (1996) Workflow Management: Modeling Concepts, Architecture, and Implementation. International Thomson Computer Press, London, UK

    Google Scholar 

  27. Leymann F. and Roller D. (1999) Production Workflow: Concepts and Techniques. Prentice-Hall PTR, Upper Saddle River, New Jersey, USA

    Google Scholar 

  28. Malone T. (1995) Commentary on Suchman article and Winograd response. Computer Supported Cooperative Work 3(1): 37–38

    Article  Google Scholar 

  29. Manna Z. and Pnueli A. (1991) The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, New York

    Google Scholar 

  30. Mitchell J. (1969): The Concept and Use of Social Networks. In: J. Mitchell (eds) Social Networks in Urban Situations. Manchester University Press, Manchester, pp. 1–50

    Google Scholar 

  31. Moreno J. (1934) Who Shall Survive?. Nervous and Mental Disease Publishing Company, Washington, DC

    Google Scholar 

  32. Mühlen M. and Rosemann M. (2000) Workflow-based Process Monitoring and Controlling - Technical and Organizational Issues. In: Sprague R.(eds) Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33). IEEE Computer Society Press, Los Alamitos, California, pp. 1–10

    Google Scholar 

  33. Nardi B., Whittaker S., Isaacs E., Creech M., Johnson J. and Hainsworth J. (2002): Integrating Communication and Information Through ContactMap. Communications of the ACM 45(2):89–95

    Article  Google Scholar 

  34. Nemati H. and Barko C. (2003) Organizational Data Mining: Leveraging Enterprise Data Resources for Optimal Performance. Idea Group Publishing, Hershey, PA, USA

    Google Scholar 

  35. Ogata H., Yano Y., Furugori N. and Jin Q. (2001): Computer Supported Social Networking For Augmenting Cooperation. Computer Supported Cooperative Work 10(2): 189–209

    Article  Google Scholar 

  36. Sauerwein L. and Linnemann J. (2001): Guidelines for Personal Data Processors: Personal Data Protection Act. Ministry of Justice, The Hague

    Google Scholar 

  37. Sayal, M., F. Casati, U. Dayal and M. Shan (2002): Business Process Cockpit. Proceedings of 28th International Conference on Very Large Data Bases (VLDB’02). Morgan Kaufmann, pp. 880–883.

  38. Schimm G. (2000) Generic Linear Business Process Modeling. In: S. Liddle, Mayr H. and Thalheim B. (eds) Proceedings of the ER 2000 Workshop on Conceptual Approaches for E-Business and The World Wide Web and Conceptual Modeling Vol. 1921 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 31–39

    Google Scholar 

  39. Scott J. (1992) Social Network Analysis. Sage, Newbury Park CA.

    Google Scholar 

  40. Smith, M. (1999): Invisible Crowds in Cyberspace: Measuring and Mapping the Social Structure of Usenet. In M. Smith and P. Kollock (eds.): Communities in Cyberspace: Perspectives on New Forms of Social Organization, Routledge Press.

  41. Staffware (2002): Staffware Process Monitor (SPM), http://www.staffware.com.

  42. Suchman L. (1994): Do Categories Have Politics? The Language /Action Perspective Reconsidered. Computer Supported Cooperative Work 2(3): 177–190

    Article  Google Scholar 

  43. Aalst W. and Dongen B. (2002) Discovering Workflow Performance Models from Timed Logs. In: Han Y., Tai S. and Wikarski D. (eds) International Conference on Engineering and Deployment of Cooperative Information Systems (EDCIS 2002) Vol. 2480 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 45–63

    Google Scholar 

  44. Aalst W. and Hee K. (2002) Workflow Management: Models, Methods, and Systems. MIT press, Cambridge, MA.

    Google Scholar 

  45. Aalst W. and Song M. (2004) Mining Social Networks: Uncovering Interaction Patterns in Business Processes. In: Desel J., Pernici B., Weske M. (eds) International Conference on Business Process Management (BPM 2004), Vol. 3080 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 244–260

    Google Scholar 

  46. Aalst W. and Weijters A. (eds) (2004): Process Mining. Special Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  47. Aalst W., van Dongen B., Herbst J., Maruster L., Schimm G. and Weijters A. (2003) Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2): 237–267

    Article  Google Scholar 

  48. Aalst W., Weijters A. and Maruster L. (2004): Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9):1128–1142

    Article  Google Scholar 

  49. Wasserman S. and Faust K. (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge

    Google Scholar 

  50. Weijters A. and Aalst W. (2003): Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2): 151–162

    Google Scholar 

  51. Winograd T. (1994): Categories, Disciplines, and Social Coordination. Computer Supported Cooperative Work 2(3): 191–197

    Article  Google Scholar 

  52. Winograd T. and Flores F. (1986) Understanding Computers and Cognition: A New Foundation for Design. Ablex, Norwood

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wil M. P. van der Aalst.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Aalst, W., Reijers, H. & Song, M. Discovering Social Networks from Event Logs. Comput Supported Coop Work 14, 549–593 (2005). https://doi.org/10.1007/s10606-005-9005-9

Download citation

Keywords

  • business process management
  • data mining
  • Petri nets
  • process mining
  • social network analysis
  • workflow management