Skip to main content
Log in

Power Losses of Solar Arrays under the Action of an Environment in a Geosynchronous Orbit

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We derive calculated and experimental relations characterizing the reduction in the electric power of solar arrays under prolonged (∼10 years) action of the environment in orbit. The influence of separate factors related to the environment on the loss of solar arrays power is studied. The following factors are considered: ionizing and ultraviolet emissions, contamination of protective glass by the products of destruction of the outer surface materials of spacecraft, thermal cycling, radiation electrization, and plasma thrusters plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Letin, V.A. Problems of Electrification of Spacecraft Solar Arrays, Kosmonavtika i Raketostroenie, 2003, no. 30, p. 42.

  2. Model’ kosmicheskogo prostranstva (Model’ kosmosa-82) (A Model of Outer Space (Cosmos Model-82)), Vernov, S.N., Ed., Moscow: Mosk. Gos. Univ., 1983, vol. 2.

    Google Scholar 

  3. Shuvalov, V.A., Modelirovanie vzaimodeistviya tel s ionosferoi (Modeling of Interactions of Bodies with the Ionosphere), Kiev: Naukova Dumka, 1995.

    Google Scholar 

  4. Kreinin, L.B. and Grigor’eva, G.M., Solar Arrays under the Action of Space Radiation, Itogi Nauki Tekh., Ser.: Issled. Kosm. Prostr., Moscow: VINITI, 1979.

    Google Scholar 

  5. Raushenbakh, G., Spravochnik po proektirovaniyu solnechnykh batarei (Handbook on Design of Solar Arrays), Moscow: Energoatomizdat, 1983.

    Google Scholar 

  6. Garrett, H., The Geosynchronous Plasma Environment, Technol. Environment Spatial., Toulouse, 1987, p. 337.

  7. Grigorieva, G.M., Kagan, M.B., Letin, V.A., et. al, Analysis of Geostationary Spacecraft Solar Arrays Degradation from Solar Proton Flares, Sixth European Space Power Conference, Porto, Portugal, 6–8 May, 2002 (ESA SP-502), p. 725.

  8. Tribble, A.C., Revised Estimates of Photochemically Deposited Contamination on the GPS Satellites, J. Spacecraft and Rockets, 1998, vol. 35, no.1, p. 114.

    Google Scholar 

  9. Prisnyakov, V.F., On Degradation of Solar Arrays onboard Spacecraft, Kosmichna Nauka i Tekhnologiya, 1996, vol. 2, no.1/2, p. 73.

    Google Scholar 

  10. Dever, J.A., Bruckner, E.J., and Scheiman, D.A., et. al., Contamination of Space Environmental Effects on Solar Cells and Thermal Control Surfaces, J. Spacecraft and Rockets, 1995, vol. 32, no.5, p. 832.

    Google Scholar 

  11. Kulikov, I.A., Kuprii, A.A., Nichiporov, F.G., et al., Experimental Study of the Influence of Space Factors on Durability of Carbon Plastics, Fiz. Khim. Obrab. Mater., 1993, no. 1, p. 47.

  12. Shuvalov, V.A., Determination of Integral Emissivity of Electrically Conducting Materials with the Help of Thermal Anemometric Probes, Teplofiz. Vys. Temp., 1984, vol. 22, no.3, p. 492.

    Google Scholar 

  13. Shuvalov, V.A., Priimak, A.I., and Gubin, V.V., Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization, Kosm. Issled., 2001, vol. 39, no.1, pp. 18–26.

    Google Scholar 

  14. Letin, V.A., Optical, Radiation and Thermal Cycling Losses of Power Solar Array Returned from Orbital Station Mir after 10.5 years of Operation, Sixth European Space Power Conference, Porto, Portugal, 6–10 May, 2002 (ESA SP-502), p. 713.

  15. Fudji, X., Shibuya, I., Abe, T., et al., Modeling of Processes of Electrification and Discharge of Electrically Insulating Covers of Satellites by Way of Irradiation of Their Surfaces with Electron Beams, Aerokosmich. Tekh., 1989, no. 5, p. 104.

  16. Stevens, N.J., Barbay, G.J., et al., Modeling of Environmentally Induced Transients within Satellites, J. Spacecraft and Rockets, 1987, vol. 24, no.3, p. 259.

    Google Scholar 

  17. Akishin, A.I., Emission Processes at Electric Breakdown of Radiation-Charged Dielectrics, Fiz. Khim. Obrab. Mater., 1998, no. 5, p. 27.

  18. Akishin, A.I., Tyutrin, Yu.I., and Tseplyaev, L.I., Electric Discharge Mechanism of Damage of Solar Arrays at Irradiation by Electrons, Fiz. Khim. Obrab. Mater., 1996, no. 6, p. 56.

  19. Antonov, V.M. and Ponomarenko, A.G., Laboratornye issledovaniya effektov elektrizatsii kosmicheskikh apparatov (Laboratory Studies of Effects of Spacecraft Electrification), Novosibirsk: Nauka, 1992.

    Google Scholar 

  20. Parks, D.E. and Kats, I., Interaction of Plasma Generated by a Spacecraft with High-Voltage Solar Panels, Raketnaya Tekhnika i Kosmonavtika, 1980, vol. 18, no.1, p. 64.

    Google Scholar 

  21. Brosse, S., Electrical Effects of Plasma Propulsion on Geostationary Telecommunication Satellite, Alcatel Telecommunications Review, 2001, no. 4, p. 270.

  22. Mandell, M.J., Katz, J., Steen, P.J., et al., The Effect of Solar Array Voltage Patterns Plasma Power Losses, IEEE Transactions on Nuclear Science, 1980, NS-27, no. 6, p. 1797.

  23. Yagushkin, N.I., Grafodatskii, O.S., Islyaev, Sh.N., et al., Radiation and Electric Phenomena in Dielectric Materials of Spacecraft at Electrifications, in Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (Investigations in Geomagnetism, Aeronomy, and Physics of the Sun), Moscow: Nauka, 1989, no. 86, p. 131.

    Google Scholar 

  24. Letin, V.A., Bordina, N.V., Zayavlin, V.R., et al., An Experimental Simulation of Space Environment Effects on the Solar-Cell Battery, Int. Conf. “Problems of Spacecraft-Environment Interaction” (Novosibirsk 1992), Irkutsk, 1992, p. 110.

  25. Tarasov, V.N., Babkin, G.V., Morozov, E.P., et at., Electrostatic Behavior of Solar-Cell Batteries under Conditions of Radiation Electrization, Int. Conf. “Problems of Spacecraft-Environment Interaction” (Novosibirsk, 1992), Irkutsk, 1992, p. 58.

  26. Askhabov, S.N., Burgasov, M.P., Veselovzorov, A.N., et al., Investigation of Jets of a Stationary Plasma Booster with Closed Drift of Electrons, Fiz. Plazmy, 1981, vol. 7, no.1, p. 225.

    Google Scholar 

  27. Grishin, S.D. and Leskov, L.V., Elektricheskie raketnye dvigateli kosmicheskikh apparatov (Electric Rocket Engines of Spacecraft), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  28. Boyd, I.D., Review of Hall Thruster Plume Modelling, J. Spacecraft and Rockets, 2001, vol. 8, no.3, p. 381.

    Google Scholar 

  29. Olsen, R.K., Extreme Potentials of Charging Recorded during a Flight of the ATS-6 Satellite, Aerokosmich. Tekh., 1988, no. 5, p. 90.

  30. Sputtering by Particle Bombardment, Behrische, R., Ed., Heidelberg: Springer, 1981, vol. 2.

    Google Scholar 

  31. Burgasov, M.P., Nadiradze, A.B., Chirov, A.A., et al., Effects of Interaction of Jets of Electric Rocket Engines with Solar Arrays of Spacecraft, Kosm. Issled., 1994, vol. 32, no.4/5, p. 194.

    Google Scholar 

  32. Korn, V.Z. and Shuvalov, V.A., Probe Diagnostics of a Flux of Particles Desorbed from the Surface of a Solid Body by a Jet of Rarefied Plasma, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1993, vol. 34, no.5, p. 144.

    Google Scholar 

  33. Gatsonis, N.C., Eckman, R., Yin, X., et al., Experimental Investigations and Numerical Modeling of Pulsed Plasma Thruster Plumes, J. Spacecraft and Rockets, 2001, vol. 38, no.3, p. 454.

    Google Scholar 

  34. Shuvalov, V.A., Bystritskii, M.G., Kochubei, G.S., and Churilov, A.E., The Structure of Bunches and Jets of Pulsed Plasma Expanding into a Vacuum, Teplofiz. Vys. Temp., 2004, vol. 42, no.1, p. 23.

    Google Scholar 

  35. Danilin, B.S. and Kireev, I.Yu., Primenenie nizkotemperaturnoi plazmy dlya travleniya i ochistki materialov (Application of Low-Temperature Plasma for Etching and Cleaning of Materials), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  36. Tajmar, M., Gonzalez, J., and Hilgers, A., Modeling of Spacecraft-Environment Interactions on SMART-1, J. Spacecraft and Rockets, 2001, vol. 38, no.3, p. 393.

    Google Scholar 

  37. Van Gilder, D.B., Boyd, J.D., and Keydar, M., Particle Simulations of a Hall Thruster Plume, J. Spacecraft and Rockets, 2001, vol. 37, no.1, p. 129.

    Google Scholar 

  38. Shuvalov, V.A., Kochubei, G.S., and Lazuchenkov, D.N., Structure of Exhaust Jets of Spacecraft Engines, Kosmichna Nauka i Tekhnologiya, 2003, vol. 9, no.4, p. 17.

    Google Scholar 

  39. Askhabov, S.N., Gdrlichko, D.P., Kozlov, A.I., et al., Investigation of the Effects of Jets and Thermal Emission of an Electrojet Engine on Solar Arrays of Spacecraft, Kosm. Issled., 1988, vol. 26, no.5, p. 796.

    Google Scholar 

  40. Chirov, A.A., Burgasov, M.P., Zayavlin, V.R., et al., Influence of Plasma Streams from an Ion-Plasma Jet Engine on Power-producing Features of Solar Arrays, Kosm. Issled., 1997, vol. 35, no.3, pp. 331–333.

    Google Scholar 

  41. Leet, S.J., Fogdall, L.B., and Wilkinson, M.C., Thermooptical Property Degradation of Irradiated Spacecraft Surfaces, J. Spacecraft and Rockets, 1995, vol. 32, no.5, p. 832.

    Google Scholar 

  42. Tribble, A.C. and Haffner, J.W., Estimates of Photochemically Deposited Contamination on the GPS Satellites, J. Spacecraft and Rockets, 1991, vol. 28, no.2, p. 222.

    Google Scholar 

  43. Neff, J., Mullen, K.R., and Fogdol, L.B., The Influence of Modeled Conditions in Synchronous Orbit on Characteristics of Contaminated Solar Reflector, Aerokosmich. Tekh., 1987, no. 8, p. 91.

  44. Tribble, A.C., Boyadjian, B., Davis, J., et al., Contamination Control Engineering Design Guidelines for the Aerospace Community, NASA Contractor Report/NASA, 1996, no. 4740.

  45. Ermolenko, A.F., Verification of Hypothesis of Linear Summation of Damages, Trudy Mosk. Energetich. Inst., 1974, no. 185, p. 52.

  46. Pereverzev, E.S., Modeli nakopleniya povrezhdenii v zadachakh dolgovechnosti (Models of Accumulation of Failures in the Problems of Longevity), Kiev: Naukova Dumka, 1995.

    Google Scholar 

  47. Kulikov, I.A., Kuprii, A.A., and Yurlova, G.A., Experimental Studies of the Influence of Space Factors on Durability of Carbon Plastics, Fiz. Khim. Obrab. Mater., 1993, no. 4, p. 38.

  48. Koltun, M.M., Solnechnye elementy (Solar Cells), Moscow: Nauka, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 274–282.

Original Russian Text Copyright © 2005 by Shuvalov, Kochubei, Gubin, Tokmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvalov, V.A., Kochubei, G.S., Gubin, V.V. et al. Power Losses of Solar Arrays under the Action of an Environment in a Geosynchronous Orbit. Cosmic Res 43, 259–267 (2005). https://doi.org/10.1007/s10604-005-0044-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10604-005-0044-2

Keywords

Navigation