Advertisement

Constraints

, Volume 22, Issue 1, pp 24–49 | Cite as

Graphical models for optimal power flow

  • Krishnamurthy DvijothamEmail author
  • Michael Chertkov
  • Pascal Van Hentenryck
  • Marc Vuffray
  • Sidhant Misra
Article

Abstract

Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. Numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.

Keywords

Constraint programming Graphical models Power systems 

References

  1. 1.
    Achterberg, T. (2009). SCIP: solving constraint integer programs. Mathematical Programming Computation, 1(1), 1–41.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baran, M. E., & Wu, F. F. (1989). Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery, 4(1), 725–734.CrossRefGoogle Scholar
  3. 3.
    Bienstock, D., & Munoz, G. (2015). LP approximations to mixed-integer polynomial optimization problems ArXiv e-prints.Google Scholar
  4. 4.
    Bienstock, D., & Verma, A. (2015). Strong NP-hardness of AC power flows feasibility. arXiv:http://arXiv.org/abs/1512.07315.
  5. 5.
    Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., & Lee, J., Lodi, A., Margot, F., Sawaya, N., et al. (2008). An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2), 186–204.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bose, S., Gayme, D., Chandy, K., & Low, S. (2015). Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Transactions on Control of Network Systems, 2(3), 278–287. doi: http://dx.doi.org/10.1109/TCNS.2015.2401172.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carpentier, J. (1962). Contribution to the economic dispatch problem. Bulletin de la Société Française des Electriciens, 3(8), 431–447.Google Scholar
  8. 8.
    Coffrin, C., Hijazi, H. L., & Van Hentenryck, P. (2015). Strengthening convex relaxations with bound tightening for power network optimization. In Principles and Practice of Constraint Programming (pp. 39–57): Springer.Google Scholar
  9. 9.
    Dechter, R. (2003). Constraint processing.Google Scholar
  10. 10.
    Dunning, I., Huchette, J., & Lubin, M. (2015). JuMP: A modeling language for mathematical optimization. arXiv:1508.01982 [math.OC].
  11. 11.
    Gamarnik, D., Shah, D., & Wei, Y. (2012). Belief propagation for min-cost network flow: Convergence and correctness. Operations Research, 60(2), 410–428.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gan, L., Li, N., Topcu, U., & Low, S. H. (2015). Exact convex relaxation of optimal power flow in radial networks. IEEE Transactions on Automatic Control, 60 (1), 72–87.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Johnson, J. K. (2008). Convex relaxation methods for graphical models: Lagrangian and maximum entropy approaches. Ph.D. thesis Massachusetts Institute of Technology.Google Scholar
  14. 14.
    Kakade, S. M., Kearns, M., & Ortiz, L. E. (2004). Graphical economics. In International Conference on Computational Learning Theory (pp. 17–32): Springer.Google Scholar
  15. 15.
    Kearns, M., Littman, M. L., & Singh, S. (2001). Graphical models for game theory. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (pp. 253–260): Morgan Kaufmann Publishers Inc.Google Scholar
  16. 16.
    Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques: MIT Press.Google Scholar
  17. 17.
    Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lavaei, J., Tse, D., & Zhang, B. (2013). Geometry of power flows and optimization in distribution networks.Google Scholar
  19. 19.
    Lehmann, K., Grastien, A., & Van Hentenryck, P. (2016). AC-feasibility on tree networks is NP-hard. IEEE Transactions on Power Systems, 31(1), 798–801. doi: 10.1109/TPWRS.2015.2407363.CrossRefGoogle Scholar
  20. 20.
    Low, S. H. (2014). Convex relaxation of optimal power flow, part i: Formulations and equivalence. arXiv preprint arXiv:1405.0766.
  21. 21.
    Low, S. H. (2014). Convex Relaxation of Optimal Power Flow, Part II: Exactness. ArXiv eprints.Google Scholar
  22. 22.
    Ortiz, L. E. (2014). On sparse discretization for graphical games. arXiv:1411.3320.
  23. 23.
    Ortiz, L. E., & Irfan, M. T. (2016). FPTAS for mixed-strategy nash equilibria in tree graphical games and their generalizations. arXiv:1602.05237.
  24. 24.
    Pai, M., & Chatterjee, D. (2014). Computer techniques in power system analysis. India: McGraw-Hill Education.Google Scholar
  25. 25.
    Sojoudi, S., & Lavaei, J. (2014). Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM Journal on Optimization, 24(4), 1746–1778.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sontag, D. A. (2010). Approximate inference in graphical models using LP relaxations: Ph.D. thesis Massachusetts Institute of Technology.Google Scholar
  27. 27.
    Vigerske, S., & Gleixner, A. (2016). SCIP: Global optimization of mixed-integer nonlinear programs in a branch-and-cut framework.Google Scholar
  28. 28.
    Vittal, V., & Bergen, A. R. (1999). Power systems analysis: Prentice Hall.Google Scholar
  29. 29.
    Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends \({\circledR }\) in Machine Learning, 1(1-2), 1–305.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.T-Divison and Center for Nonlinear Studies, Los Alamos National LaboratoryNew MexicoUSA
  3. 3.Industrial and Operations EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations