Advertisement

Constraints

, Volume 22, Issue 2, pp 230–264 | Cite as

Triangle-based consistencies for cost function networks

  • Hiep Nguyen
  • Christian Bessiere
  • Simon de Givry
  • Thomas SchiexEmail author
Article

Abstract

Cost Function Networks (aka Weighted CSP) allow to model a variety of problems, such as optimization of deterministic and stochastic graphical models including Markov random Fields and Bayesian Networks. Solving cost function networks is thus an important problem for deterministic and probabilistic reasoning. This paper focuses on local consistencies which define essential tools to simplify Cost Function Networks, and provide lower bounds on their optimal solution cost. To strengthen arc consistency bounds, we follow the idea of triangle-based domain consistencies for hard constraint networks (path inverse consistency, restricted or max-restricted path consistencies), describe their systematic extension to cost function networks, study their relative strengths, define enforcing algorithms, and experiment with them on a large set of benchmark problems. On some of these problems, our improved lower bounds seem necessary to solve them.

Keywords

Cost function networks Weighted CSP Constraint optimization problems High order consistencies Restricted path consistency Path inverse consistency Max-restricted path consistency 

Notes

Acknowledgements

This work has been partly funded by the “Agence nationale de la Recherche”, reference ANR-10-BLA-0214

References

  1. 1.
    Allouche, D., Bessiere, C., Boizumault, P., Givry, S., Gutierrez, P., Loudni, S., Metivier, J., & Schiex, T. (2012). Decomposing global cost functions. In Proc. of AAAI.Google Scholar
  2. 2.
    Bensana, E., Lemaître, M., & Verfaillie, G. (1999). Earth observation satellite management. Constraints, 4(3), 293–299.CrossRefzbMATHGoogle Scholar
  3. 3.
    Berlandier, P. (1995). Improving domain filtering using restricted path consistency. In Proceedings IEEE Conference on Artificial Intelligenece and Applications (CAIA’95).Google Scholar
  4. 4.
    Cabon, B., de Givry, S., Lobjois, L., Schiex, T., & Warners, J. (1999). Radio link frequency assignment. Constraints, 4, 79–89.CrossRefzbMATHGoogle Scholar
  5. 5.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc consistency revisited. Artificial Intelligence, 174, 449–478.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., & Zytnicki, M. (2008). Virtual Arc Consistency for Weighted CSP. In Proc. of AAAI’2008. Chicago, USA.Google Scholar
  7. 7.
    Cooper, M.C. (2003). Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets Systems, 134(3), 311–342.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cooper, M.C. (2005). High-order consistency in Valued Constraint Satisfaction. Constraints, 10, 283–305.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cooper, M.C., de Givry, S., & Schiex, T. (2007). Optimal soft arc consistency. In Proc. of IJCAI’2007, pp. 68–73. Hyderabad, India.Google Scholar
  10. 10.
    Cooper, M.C., & Schiex, T. (2004). Arc consistency for soft constraints. Artificial Intelligence, 154(1-2), 199–227.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Debruyne, R., & Bessière, C. (1997). From restricted path consistency to max-restricted path consistency. In Proc. of CP’97, no. 1330 in LNCS, pp. 312–326. Springer-Verlag, Linz, Austria.Google Scholar
  12. 12.
    Dehani, D., Lecoutre, C., & Roussel, O. (2013). Extension des cohérences wcsps aux tuples. In Proc. of JFPC-13.Google Scholar
  13. 13.
    Favier, A., de Givry, S., Legarra, A., & Schiex, T. (2011). Pairwise decomposition for combinatorial optimization in graphical models. In Proc. of IJCAI’11. Barcelona, Spain.Google Scholar
  14. 14.
    Freuder, E.C., & Elfe, C.D. (1996). Neighborhood inverse consistency preprocessing. In Proc. of AAAI’96. Portland, OR.Google Scholar
  15. 15.
    Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., & de Givry, S. (2016). Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. In Proc. of CP-AI-OR’2016. Banff, Canada.Google Scholar
  16. 16.
    Larrosa, J. (2002). On arc and node consistency in weighted CSP. In Proc. AAAI’02, pp. 48–53. Edmondton, CA.Google Scholar
  17. 17.
    Larrosa, J., de Givry, S., Heras, F., & Zytnicki, M. (2005). Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In Proc. of the 19 t h IJCAI, pp. 84–89. Edinburgh, Scotland.Google Scholar
  18. 18.
    Larrosa, J., Heras, F., & de Givry, S. (2008). A logical approach to efficient max-sat solving. Artificial Intelligence, 172(2-3), 204–233.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Larrosa, J., & Schiex, T. (2003). In the quest of the best form of local consistency for weighted CSP. In Proc. of the 18 t h IJCAI, pp. 239–244. Acapulco, Mexico.Google Scholar
  20. 20.
    Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency. Artificial Intelligence, 159(1-2), 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, J., & Leung, K. (2009). Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction. In Proc. of the 21 r d IJCAI, pp. 559–565. Pasadena (CA), USA.Google Scholar
  22. 22.
    Lee, J., & Leung, K. (2012). Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction. Artificial Intelligence, 43, 257–292.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sánchez, M., de Givry, S., & Schiex, T. (2008). Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques. Constraints, 13(1-2), 130–154.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schiex, T. (2000). Arc consistency for soft constraints. In Principles and Practice of Constraint Programming - CP 2000, LNCS, vol. 1894, pp. 411–424. Singapore.Google Scholar
  25. 25.
    Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: hard and easy problems. In Proc. of the 14 th IJCAI, pp. 631–637. Montréal, Canada.Google Scholar
  26. 26.
    Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., & Schiex, T. (2015). Guaranteed discrete energy optimization on large protein design problems. Journal of Chemical Theory and Computation, 11(12), 5980–5989.CrossRefGoogle Scholar
  27. 27.
    Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., & Barbe, S. (2013). A new framework for computational protein design through cost function network optimization. Bioinformatics, 29(17), 2129–2136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.MIAT, UR 875Université de Toulouse, INRACastanet-TolosanFrance
  2. 2.University of MontpellierMontpellierFrance

Personalised recommendations