Operating room management under uncertainty

Abstract

The operating room management problems are legion. This paper tackles the scheduling of surgical procedures in an operating theatre containing up to two operating rooms and two surgeons. We first solve a deterministic version that uses the constraint programming paradigm and then a stochastic version which embeds the former in a sample average approximation scheme. The latter produces more robust schedules that cope better with the surgeries’ time variability

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    AIMMS-MOPTA (2013). Challenge operation room management under uncertainty. http://coral.ie.lehigh.edu/~mopta2013/competition.

  2. 2.

    Beliën, J. (2008). A branch-and-price approach for integrating nurse and surgery scheduling. European Journal of Operational Research, 189(3), 652–668. doi:10.1016/j.ejor.2006.10.060.

    Article  MATH  Google Scholar 

  3. 3.

    Berg, B., Denton, B., Nelson, H., Balasubramanian, H., Rahman, A., Bailey, A., & Lindor, K. (2009). A discrete event simulation model to evaluate operational performance of a colonoscopy suite. Medical Decision Making, 30(3), 380–387. doi:10.1177/0272989X09345890.

    Article  Google Scholar 

  4. 4.

    Birge, J.R., & Louveaux, F. (2011). Introduction to stochastic programming. In Springer Series in Operations Research and Financial Engineering. 2nd. New York: Springer. doi:10.1007/978-1-4614-0237-4.

    Google Scholar 

  5. 5.

    Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and scheduling: A literature review. European Journal of Operational Research, 201(3), 921–932. doi:10.1016/j.ejor.2009.04.011.

    Article  MATH  Google Scholar 

  6. 6.

    Demeulemeester, E., Beliën, J., Cardoen, B., & Samudra, M. (2013). Operating room planning and scheduling. In Handbook of healthcare operations management. Springer, pp. 121–152. doi:10.1007/978-1-4614-5885-2_5.

  7. 7.

    Gupta, D. (2003). A sequential bounding approach for optimal appointment scheduling. IIE Transactions, 35(11), 1003–1016. doi:10.1080/07408170304395.

    Article  Google Scholar 

  8. 8.

    Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health care management science, 10(1), 13–24. doi:10.1007/s10729-006-9005-4.

    Article  Google Scholar 

  9. 9.

    Dexter, F., & Traub, R.D. (2002). How to schedule elective surgical cases into specific operating rooms to maximize the efficiency of use of operating room time. Anesthesia & Analgesia, 94(4), 933–942. doi:10.1097/00000539-200204000-00030.

    Article  Google Scholar 

  10. 10.

    Dexter, F., Macario, A., & Traub, R.D. (1999). Which algorithm for scheduling add-on elective cases maximizes operating room utilization?: Use of bin packing algorithms and fuzzy constraints in operating room management. Anesthesiology, 91(5), 1491–1500. doi:10.1097/00000542-199911000-00043.

    Article  Google Scholar 

  11. 11.

    Guerriero, F., & Guido, R. (2011). Operational research in the management of the operating theatre: a survey. Health care management science, 14(1), 89–114. doi:10.1007/s10729-010-9143-6.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Guinet, A., & Chaabane, S. (2003). Operating theatre planning. International Journal of Production Economics, 85 (1), 69–81. doi:10.1016/S0925-5273(03)00087-2.

    Article  Google Scholar 

  13. 13.

    Hanset, A., Meskens, N., & Duvivier, D. (2010). Using constraint programming to schedule an operating theatre. In IEEE Workshop on Health Care Management (WHCM), IEEE (pp. 1–6). doi:10.1109/WHCM.2010.5441245.

  14. 14.

    Harper, P.R. (2002). A Framework for Operational Modelling of Hospital Resources. Health Care Management Science, 5(3), 165–173. doi:10.1023/A:1019767900627.

    Article  Google Scholar 

  15. 15.

    Huschka, T.R., Denton, B., Gul, S., & Fowler, J.W. (2007). Bi-criteria evaluation of an outpatient procedure center via simulation. In Winter Simulation Conference, IEEE (pp. 1510–1518). doi:10.1109/WSC.2007.4419764

  16. 16.

    Kleywegt, A.J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502. doi:10.1137/S1052623499363220.

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Min, D., & Yih, Y. (2010). Scheduling elective surgery under uncertainty and downstream capacity constraints. European Journal of Operational Research, 206(3), 642–652. doi:10.1016/j.ejor.2010.03.014.

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    MHallah, R., & Al-Roomi, A. (2014). The planning and scheduling of operating rooms: A simulation approach. Computers & Industrial Engineering, 78, 235–248. doi:10.1016/j.cie.2014.07.022.

    Article  Google Scholar 

  19. 19.

    Pham, D.N., & Klinkert, A. (2008). Surgical case scheduling as a generalized job shop scheduling problem. European Journal of Operational Research, 185(3), 1011–1025. doi:10.1016/j.ejor.2006.03.059.

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Saadouli, H., Jerbi, B., Dammak, A., Masmoudi, L., & Bouaziz, A. (2015). A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department. Computers & Industrial Engineering, 80, 72–79. doi:10.1016/j.cie.2014.11.021.

    Article  Google Scholar 

  21. 21.

    Sier, D., Tobin, P., & McGurk, C. (1997). Scheduling surgical procedures. The Journal of the Operational Research Society, 48(9), 884–891. doi:10.1057/palgrave.jors.2600441.

    Article  MATH  Google Scholar 

  22. 22.

    van Houdenhoven, M., van Oostrum, J.M., Hans, E.W., Wullink, G., & Kazemier, G. (2007). Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling. Anesthesia & Analgesia, 105(3), 707–714. doi:10.1213/01.ane.0000277492.90805.0f.

    Article  Google Scholar 

  23. 23.

    World Bank (2011). Health expenditure, total (% of Gross Domestic Product). http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS/countries/1W-US?display=graph.

Download references

Acknowledgments

We sincerely thank Etienne Beauchamp, Polytechnique Montréal, for all the work he has provided during the implementation of the model in AIMMS. We would like to thank Professor Louis-Martin Rousseau, Polytechnique Montréal, for his support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antoine Legrain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gauthier, J.B., Legrain, A. Operating room management under uncertainty. Constraints 21, 577–596 (2016). https://doi.org/10.1007/s10601-015-9236-4

Download citation

Keywords

  • Operating room management
  • Uncertainty
  • Stochastic
  • Constraint programming
  • Sample average approximation