Akers, S.B. (1978). Binary decision diagrams. IEEE Transactions on Computers, C-27, 509–516.
Article
Google Scholar
Andersen, H.R., Hadzic, T., Hooker, J.N., & Tiedemann, P. (2007). A constraint store based on multivalued decision diagrams. In Proceedings of the 13th international conference on Principles and practice of constraint programming (pp. 118–132). Springer-Verlag, Berlin, Heidelberg.
Becker, B., Behle, M., Eisenbrand, F., & Wimmer, R. (2005). BDDs in a branch and cut framework. In Nikoletseas, S. (Ed.), Experimental and efficient algorithms, proceedings of the 4th international workshop on Efficient and experimental algorithms (WEA 05). Lecture Notes in Computer Science (Vol. 3503, pp. 452–463). Springer.
Behle, M. (2007). Binary decision diagrams and integer programming. Ph.D. thesis, Max Planck Institute for Computer Science.
Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems. In Proceedings of the 3rd international workshop on Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR).
Bergman, D. (2013). New techniques for discrete optimization. Ph.D. thesis, Tepper School of Business, Carnegie mellon university.
Bergman, D., Cire, A.A., & van Hoeve, W.J. (2014). Mdd propagation for sequence constraints. Journal of Artificial Intelligence Research (JAIR), 50, 697–722.
MATH
MathSciNet
Google Scholar
Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2012). Variable ordering for the application of bdds to the maximum independent set problem. In Proceedings of the 9th international conference on integration of AI and OR techniques in Constraint programming for combinatorial optimization problems (pp. 34–49). Springer-Verlag, Berlin, Heidelberg.
Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2014). Optimization bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2), 253–268.
Article
MathSciNet
Google Scholar
Bergman, D., Cire, A., van Hoeve, W.J., & Yunes, T. (2014). Bdd-based heuristics for binary optimization. Journal of Heuristics, 20(2), 211–234.
Article
Google Scholar
Bergman, D., van Hoeve, W.J., & Hooker, J. (2011). Manipulating MDD relaxations for combinatorial optimization. In T. Achterberg & J. Beck (Eds.), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, Lecture notes in computer science (Vol. 6697, pp. 20–35). Springer Berlin / Heidelberg.
Bryant, R.E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C-35, 677–691.
Article
Google Scholar
Cire, A.A., & van Hoeve, W.J. (2013). Multivalued decision diagrams for sequencing problems. Operations Research, 61(6), 1411–1428.
Article
MATH
MathSciNet
Google Scholar
Fisher, M.L. (2004). The lagrangian relaxation method for solving integer programming problems. Management Science, 50(12), 1861–1871. Supplement.
Article
Google Scholar
Fontaine, D., Michel, L., & Van Hentenryck, P. (2014). Constraint-based lagrangian relaxation. In B. O’Sullivan (Ed.), Principles and practice of constraint programming, Lecture notes in computer science (Vol. 8656, pp. 324–339). Springer International Publishing.
Hadzic, T., & Hooker, J. (2006). Postoptimality analysis for integer programming using binary decision diagrams. Tech. rep., Carnegie Mellon University.
Hadzic, T., Hooker, J.N., O’Sullivan, B., & Tiedemann, P. (2008). Approximate compilation of constraints into multivalued decision diagrams. In Proceedings of the 14th international conference on principles and practice of constraint programming (pp. 448–462). Springer-Verlag, Berlin.
Hoda, S., van Hoeve, W.J., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint programming. In Proceedings of constraint programming (Vol. 6308, pp. 266–280). LNCS, Springer.
Hooker, J.N. (2012). Integrated methods for optimization (International Series in Operations Research & Management Science), 2nd Edn. Inc., Secaucus, Springer-Verlag New York.
Khemmoudj, M., Bennaceur, H., & Nagih, A. (2005). Combining arc-consistency and dual lagrangean relaxation for filtering csps. In R. Barták & M. Milano (Eds.), Integration of AI and OR techniques in Constraint programming for combinatorial optimization problems, Lecture notes in computer science (Vol. 3524, pp. 258–272). Springer Berlin Heidelberg.
Lee, C.Y. (1959). Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal, 38, 985–999.
Article
Google Scholar
Lemaréchal, C. (2001). Lagrangian relaxation. In M. Jünger & D. Naddef (Eds.), Computational combinatorial optimization, Lecture notes in computer science (Vol. 2241, pp. 112–156). Springer Berlin Heidelberg.
Papadimitriou, C.H., & Steiglitz, K. (1982). Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River.
Rossi, F., van Beek, P., & Walsh, T. (eds.) (2006). Handbook of constraint programming. Elsevier.