Skip to main content
Log in

Scheduling scientific experiments for comet exploration

  • Application
  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The Rosetta/Philae mission was launched in 2004 by the European Space Agency (ESA). It is scheduled to reach the comet 67P/Churyumov-Gerasimenko in November 2014 after traveling more than six billion kilometers. The Philae module will then be separated from the orbiter (Rosetta) to attempt the first ever landing on the surface of a comet. If it succeeds, it will engage a sequence of scientific exploratory experiments on the comet. In this paper, we describe a constraint programming model for scheduling the different experiments of the mission. A feasible plan must satisfy a number of constraints induced by energetic resources, precedence relations on tasks, and incompatibility between instruments. Moreover, a very important aspect is related to the transfer (to the orbiter then to the Earth) of all the data produced by the instruments. The capacity of inboard memories and the limitation of transfers within visibility windows between lander and orbiter, make the transfer policy implemented on the lander CPU prone to data loss. We introduce a global constraint to handle data transfers. The purpose of this constraint is to ensure that data-producing tasks are scheduled in such a way that no data is lost. Thanks to this constraint and to the filtering rules we propose, mission control is now able to compute feasible plans in a few seconds for scenarios where minutes were previously often required. Moreover, in many cases, data transfers are now much more accurately simulated, thus increasing the reliability of the plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling, 17(7), 57–73.

    Article  MathSciNet  Google Scholar 

  2. Philippe, B., Le Pape, C., Nuijten, W. (2001). Constraint-Based Scheduling: Springer.

  3. Beldiceanu, N., & Carlsson, M. (2001). Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint, In: Seventh International Conference on Principles and Practice of Constraint Programming (CP 2001), LNCS 2239, pp. 377–391. Springer.

  4. Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini, S., Oddi, A., Policella, N., Rabenau, E., Schulster, J. (2007). Mexar2: AI solves mission planner problems. IEEE Intelligent Systems, 22(4), 12–19.

    Article  Google Scholar 

  5. Philippe, L. (2003). Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results. Artificial Intelligence, 143(2), 151–188.

    Article  MATH  MathSciNet  Google Scholar 

  6. Mancel, C., & Lopez, P. (2003). Complex optimization problems in space systems, In: 13th International Conference on Automated Planning & Scheduling (ICAPS’03), Doctoral Consortium.

  7. Oddi, A., & Policella, N. (2007). Improving robustness of spacecraft downlink schedules. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37(5), 887–896.

    Article  Google Scholar 

  8. Righini, G., & Tresoldi, E. (2010). A mathematical programming solution to the Mars Express memory dumping problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 40(3), 268–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hebrard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonin, G., Artigues, C., Hebrard, E. et al. Scheduling scientific experiments for comet exploration. Constraints 20, 77–99 (2015). https://doi.org/10.1007/s10601-014-9169-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-014-9169-3

Keywords

Navigation