Constraints

, Volume 19, Issue 3, pp 195–242 | Cite as

Lightweight dynamic symmetry breaking

  • Christopher Mears
  • Maria Garcia de la Banda
  • Bart Demoen
  • Mark Wallace
Article

Abstract

Symmetries in constraint problems present an opportunity for reducing search. This paper presents Lightweight Dynamic Symmetry Breaking, an automatic symmetry breaking method that is efficient enough to be used as a default, since it never yields a major slowdown while often giving major performance improvements. This is achieved by automatically exploiting certain kinds of symmetry that are common, can be compactly represented, easily and efficiently processed, automatically detected, and lead to large reductions in search. Moreover, the method is easy to implement and integrate in any constraint system. Experimental results show the method is competitive with the best symmetry breaking methods without risking poor performance.

Keywords

Symmetry Symmetry breaking Group theory Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10601_2013_9154_MOESM1_ESM.zip (15 kb)
(ZIP 14.9 kb)
10601_2013_9154_MOESM2_ESM.zip (18 kb)
(ZIP 17.8 kb)

References

  1. 1.
    Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar (Ed.), CP. Lecture notes in computer science (Vol. 1713, pp. 73–87). Springer.Google Scholar
  2. 2.
    Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M. (2006). Symmetry definitions for constraint satisfaction problems. Constraints, 11(2–3), 115–137.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A. (1996). Symmetry-breaking predicates for search problems. In L.C. Aiello, J. Doyle, S.C. Shapiro (Eds.), KR (pp. 148–159). Morgan Kaufmann.Google Scholar
  4. 4.
    Fahle, T., Schamberger, S., Sellmann, M. (2001). Symmetry breaking. In T. Walsh (Ed.), Principles and practice of constraint programming - CP 2001, 7th international conference, CP 2001, Paphos, Cyprus, 26 November–1 December 2001, proceedings. Lecture notes in computer science (Vol. 2239, pp. 93–107). Springer.Google Scholar
  5. 5.
    Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T. (2002). Breaking row and column symmetries in matrix models. In P. Van Hentenryck (Ed.), Principles and practice of constraint programming - CP 2002, 8th international conference, CP 2002, Ithaca, NY, USA, 9–13 September 2002, proceedings. Lecture notes in computer science (Vol. 2470, pp. 462–476). Springer.Google Scholar
  6. 6.
    Flener, P., Pearson, J., Sellmann, M. (2009). Static and dynamic structural symmetry breaking. Annals of Mathematics and Artificial Intelligence, 57(1), 37–57.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P., Ågren, M. (2009). Dynamic structural symmetry breaking for constraint satisfaction problems. Constraints, 14(4), 506–538.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In T. Walsh (Ed.), Principles and practice of constraint programming - CP 2001, 7th international conference, CP 2001, Paphos, Cyprus, 26 November–1 December 2001, proceedings. Lecture notes in computer science (Vol. 2239, pp. 77–92). Springer.Google Scholar
  9. 9.
    Gecode Team (2006). Gecode: generic constraint development environment. Available from http://www.gecode.org. Accessed 15 Nov 2013.
  10. 10.
    Gent, I.P., Harvey, W., Kelsey, T. (2002). Groups and constraints: symmetry breaking during search. In P. Van Hentenryck (Ed.), Principles and practice of constraint programming - CP 2002, 8th international conference, CP 2002, Ithaca, NY, USA, 9–13 September 2002, proceedings. Lecture notes in computer science (Vol. 2470, pp. 415–430). Springer.Google Scholar
  11. 11.
    Gent, I.P., Harvey, W., Kelsey, T., Linton, S. (2003). Generic SBDD using computational group theory. In F. Rossi (Ed.), Principles and practice of constraint programming - CP 2003, 9th international conference, CP 2003, Kinsale, Ireland, 29 September–3 October 2003, proceedings. Lecture notes in computer science (Vol. 2833, pp. 333–347). Springer.Google Scholar
  12. 12.
    Gent, I.P., & Smith, B.M. (2000). Symmetry breaking in constraint programming. In W. Horn (Ed.), ECAI (pp. 599–603). IOS Press.Google Scholar
  13. 13.
    Gent, I.P., & Walsh, T. (1999). CSPLib: a benchmark library for constraints. Technical report, Technical report APES-09-1999. Available from http://www.csplib.org/. Accessed 15 Nov 2013.
  14. 14.
    Gomes, C.P., Selman, B., Crato, N., Kautz, H.A. (2000). Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning, 24(1/2), 67–100.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Heller, D.S., Panda, A., Sellmann, M., Yip, J. (2008). Model restarts for structural symmetry breaking. In P.J. Stuckey (Ed.), CP. Lecture notes in computer science (Vol. 5202, pp. 539–544). Springer.Google Scholar
  16. 16.
    Law, Y., & Lee, J. (2006). Symmetry breaking constraints for value symmetries in constraint satisfaction. Constraints, 11(2–3), 221–267.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Law, Y.C., Lee, J.H.M., Walsh, T., Yip, J.Y.K. (2007). Breaking symmetry of interchangeable variables and values. In C. Bessiere (Ed.), CP. Lecture notes in computer science (Vol. 4741, pp. 423–437). Springer.Google Scholar
  18. 18.
    McDonald, I., & Smith, B.M. (2002). Partial symmetry breaking. In P. Van Hentenryck (Ed.), Principles and practice of constraint programming - CP 2002, 8th international conference, CP 2002, Ithaca, NY, USA, 9–13 September 2002, proceedings. Lecture notes in computer science (Vol. 2470, pp. 431–445). Springer.Google Scholar
  19. 19.
    Mears, C., Garcia de la Banda, M.., Wallace, M., Demoen, B. (2008). A novel approach for detecting symmetries in CSP models. In L. Perron & M.A. Trick (Eds.), CPAIOR. Lecture notes in computer science (Vol. 5015, pp. 158–172). Springer.Google Scholar
  20. 20.
    Mears, C., Garcia de la Banda, M., Demoen, B., Wallace, M. (2008). Lightweight dynamic symmetry breaking. In SymCon’08: The 8th international workshop on symmetry in constraint satisfaction problems.Google Scholar
  21. 21.
    Petrie, K.E., & Smith, B.M. (2003). Symmetry breaking in graceful graphs. In F. Rossi (Ed.), Principles and practice of constraint programming - CP 2003, 9th international conference, CP 2003, Kinsale, Ireland, 29 September–3 October 2003, proceedings. Lecture notes in computer science (Vol. 2833, pp. 930–934). Springer.Google Scholar
  22. 22.
    Prestwich, S.D., Hnich, B., Simonis, H., Rossi, R., Tarim, S.A. (2012). Partial symmetry breaking by local search in the group. Constraints, 17, 148–171.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In Proceedings of the 7th international symposium on methodologies for intelligent systems. ISMIS ’93 (pp. 350–361). London: Springer-Verlag.Google Scholar
  24. 24.
    Puget, J.-F. (2002). Symmetry breaking revisited. In P. Van Hentenryck (Ed.), Principles and practice of constraint programming - CP 2002, 8th international conference, CP 2002, Ithaca, NY, USA, 9–13 September 2002, proceedings. Lecture notes in computer science (Vol. 2470, pp. 446–461). Springer.Google Scholar
  25. 25.
    Puget, J.-F. (2003). Symmetry breaking using stabilizers. In F. Rossi (Ed.), Principles and practice of constraint programming - CP 2003, 9th international conference, CP 2003, Kinsale, Ireland, 29 September–3 October 2003, proceedings. Lecture notes in computer science (Vol. 2833, pp. 585–599). Springer.Google Scholar
  26. 26.
    Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S. (2004). Tractable symmetry breaking using restricted search trees. In R. López de Mántaras & L. Saitta (Eds.), ECAI (pp. 211–215). IOS Press.Google Scholar
  27. 27.
    The GAP Group (2006). GAP – groups, algorithms, and programming, version 4.4.9.Google Scholar
  28. 28.
    Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M. (2003). Tractable symmetry breaking for CSPs with interchangeable values. In G. Gottlob & T. Walsh (Eds.), IJCAI (pp. 277–284). Morgan Kaufmann.Google Scholar
  29. 29.
    Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M. (2005). Compositional derivation of symmetries for constraint satisfaction. In J.-D. Zucker & L. Saitta (Eds.), SARA. Lecture notes in computer science (Vol. 3607, pp. 234–247). Springer.Google Scholar
  30. 30.
    Wallace, M.G., Novello, S., Schimpf, J. (1997). ECLiPSe: a platform for constraint logic programming. ICL Systems Journal, 12(1), 159–200.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher Mears
    • 1
  • Maria Garcia de la Banda
    • 1
  • Bart Demoen
    • 2
  • Mark Wallace
    • 1
  1. 1.Monash UniversityCaulfield EastAustralia
  2. 2.KU LeuvenLeuvenBelgium

Personalised recommendations