A branch and bound algorithm for numerical Max-CSP

Abstract

The Constraint Satisfaction Problem (CSP) framework allows users to define problems in a declarative way, quite independently from the solving process. However, when the problem is over-constrained, the answer “no solution” is generally unsatisfactory. A Max-CSP \(\mathcal{P}_m = \langle V, \textbf{D}, C \rangle\) is a triple defining a constraint problem whose solutions maximize the number of satisfied constraints. In this paper, we focus on numerical CSPs, which are defined on real variables represented as floating point intervals and which constraints are numerical relations defined in intension. Solving such a problem (i.e., exactly characterizing its solution set) is generally undecidable and thus consists in providing approximations. We propose a Branch and Bound algorithm that provides under and over approximations of a solution set that maximize the maximum number \({m_{\mathcal P}}\) of satisfied constraints. The technique is applied on three numeric applications and provides promising results.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J.-F. (1999). Revising hull and box consistency. In Proceedings of the 1999 international conference on logic programming, ICLP’99 (pp. 230–244). Cambridge, MA, USA: Massachusetts Institute of Technology.

    Google Scholar 

  2. 2.

    Benhamou, F., Goualard, F., Languenou, E., & Christie, M. (2004). Interval constraint solving for camera control and motion planning. ACM Transactions on Computational Logic, 5(4), 732–767.

    Article  MathSciNet  Google Scholar 

  3. 3.

    Benhamou, F., McAllester, D., & van Hentenryck, P. (1994). CLP(intervals) revisited. In International logic programming symposium, ILPS ’94 (pp. 124–138). Cambridge: MIT.

    Google Scholar 

  4. 4.

    Benhamou, F., & Older, W. J. (1997). Applying interval arithmetic to real, integer and Boolean constraints. Journal of Logic Programming, 32(1), 1–24.

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    Borning, A., Freeman-Benson, B., & Wilson, M. (1992). Constraint hierarchies. Lisp and Symbolic Computation, 5(3), 223–270.

    Article  Google Scholar 

  6. 6.

    Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). KNITRO: An integrated package for nonlinear optimization. In Large-scale nonlinear optimization (pp. 35–59). New York: Springer.

    Chapter  Google Scholar 

  7. 7.

    Christie, M., & Normand, J.-M. (2005). A semantic space partitionning approach to virtual camera control. In Proceedings of the annual eurographics conference (Vol. 24, pp. 247–256).

  8. 8.

    Christie, M., Normand, J.-M., & Truchet, C. (2006). Computing inner approximations of numerical MaxCSP. In Interval analysis, constraint propagation, applications, IntCP 2006.

  9. 9.

    Collavizza, H., Delobel, F., & Rueher, M. (1999). Extending consistent domains of numeric CSP. In IJCAI ’99: Proceedings of the sixteenth international joint conference on artificial intelligence (pp. 406–413).

  10. 10.

    de Givry, S., Larrosa, J., Meseguer, P., & Schiex, T. (2003). Solving Max-SAT as weighted CSP. In Principles and practice of constraint programming, CP 2003 (pp. 363–376). New York: Springer.

    Google Scholar 

  11. 11.

    Delanoue, N., Jaulin, L., & Cottenceau, B. (2004). Counting the number of connected components of a set and its application to robotics. In PARA (pp. 93–101).

  12. 12.

    Dongarra, J. (2007). Performance of various computers using standard linear equations software. Technical report CS-89-85, University of Tennessee.

  13. 13.

    Drezner, Z., & Hamacher, H. W. (Eds.) (2002). Facility location. Applications and theory. New York: Springer.

    MATH  Google Scholar 

  14. 14.

    Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. Computing Surveys, 23(1), 5–48.

    Article  Google Scholar 

  15. 15.

    Hayes, B. (2003). A lucid interval. American Scientist, 91(6), 484–488.

    Google Scholar 

  16. 16.

    Hirsch, M. J., Meneses, C. N., Pardalos, P. M., & Resende, M. G. C. (2007). Global optimization by continuous grasp. Optimization Letters, 1, 201–212.

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Jaulin, L., & Walter, E. (1993). Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis. Mathematics and Computers in Simulation, 35(2), 123–137.

    Article  MathSciNet  Google Scholar 

  18. 18.

    Jaulin, L., & Walter, E. (2002). Guaranteed robust nonlinear minimax estimation. IEEE Transaction on Automatic Control, 47(11), 1857–1864.

    Article  MathSciNet  Google Scholar 

  19. 19.

    Jaulin, L., Walter, E., & Didrit, O. (1996). Guaranteed robust nonlinear parameter bounding. In CESA’96, IMACS multiconference (symposium on modelling, analysis and simulation) (pp. 1156–1161).

  20. 20.

    Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI ’93: Proceedings of the thirteenth international joint conference on artificial intelligence (pp. 232–238).

  21. 21.

    Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99–118.

    MATH  Article  MathSciNet  Google Scholar 

  22. 22.

    Milanese, M., & Vicino, A. (1991). Estimation theory for nonlinear models and set membership uncertainty. Automatica, 27(2), 403–408.

    MATH  Article  MathSciNet  Google Scholar 

  23. 23.

    Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1–3), 161–205.

    MATH  Article  MathSciNet  Google Scholar 

  24. 24.

    Moore, R. E. (1966). Interval analysis. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  25. 25.

    Murtagh, B. A., & Saunders, M. A. (1998). Minos 5.5 user’s guide. Technical report, Systems Optimization Laboratory, Department of Operations Research, Stanford University.

  26. 26.

    Neumaier, A. (1990). Interval methods for systems of equations. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  27. 27.

    Normand, J.-M. (2008). Placement de caméra en environnements virtuels. PhD thesis, Université de Nantes.

  28. 28.

    Petit, T., Régin, J.-C., & Bessière, C. (2002). Range-based algorithm for Max-CSP. In Principles and practice of constraint programming, CP 2002 (pp. 280–294). New York: Springer.

    Google Scholar 

  29. 29.

    Wallace, R. J. (1996). Analysis of heuristic methods for partial constraint satisfaction problems. In Principles and practice of constraint programming, CP 1996 (pp. 482–496). New York: Springer.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Normand.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Normand, JM., Goldsztejn, A., Christie, M. et al. A branch and bound algorithm for numerical Max-CSP. Constraints 15, 213–237 (2010). https://doi.org/10.1007/s10601-009-9084-1

Download citation

Keywords

  • Numerical Max-CSP
  • Constraint programming
  • Numerical constraints