Skip to main content
Log in

Classes of submodular constraints expressible by graph cuts

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Submodular constraints play an important role both in theory and practice of valued constraint satisfaction problems (VCSPs). It has previously been shown, using results from the theory of combinatorial optimisation, that instances of VCSPs with submodular constraints can be minimised in polynomial time. However, the general algorithm is of order O(n 6) and hence rather impractical. In this paper, by using results from the theory of pseudo-Boolean optimisation, we identify several broad classes of submodular constraints over a Boolean domain which are expressible using binary submodular constraints, and hence can be minimised in cubic time. Furthermore, we describe how our results translate to certain optimisation problems arising in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billionet, A., & Minoux, M. (1985). Maximizing a supermodular pseudo-Boolean function: A polynomial algorithm for cubic functions. Discrete Applied Mathematics, 12, 1–11.

    Article  MathSciNet  Google Scholar 

  2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints, 4, 199–240.

    Article  MATH  MathSciNet  Google Scholar 

  3. Boros, E., & Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1–3), 155–225.

    MATH  MathSciNet  Google Scholar 

  4. Bulatov, A. A., Krokhin, A. A., & Jeavons, P. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3), 720–742.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, D., Cooper, M., & Jeavons, P. (2006). An algebraic characterisation of complexity for valued constraints. In Proceedings of the 12th international conference on principles and practice of contraint programming (CP). Lecture notes in computer science (Vol. 4204). New York: Springer.

    Google Scholar 

  6. Cohen, D., Cooper, M., & Jeavons, P. (2008). Generalising submodularity and Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms. Theoretical Computer Science, 401, 36–51.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, D., Cooper, M., Jeavons, P., & Krokhin, A. (2005). Supermodular functions and the complexity of MAX-CSP. Discrete Applied Mathematics, 149, 53–72.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, D., Cooper, M., Jeavons, P., & Krokhin, A. (2006). The complexity of soft constraint satisfaction. Artificial Intelligence, 170, 983–1016.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cooper, M. (2005). High-order consistency in valued constraint satisfaction. Constraints, 10, 283–305.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cooper, M. C. (2008). Minimization of locally defined submodular functions by optimal soft arc consistency. Constraints, 13(4), 437–458.

    Article  MATH  MathSciNet  Google Scholar 

  11. Crama, Y. (1989). Recognition problems for special classes of polynomials in 0-1 variables. Mathematical Programming, 44, 139–155.

    Article  MATH  MathSciNet  Google Scholar 

  12. Creignou, N., Khanna, S., & Sudan, M. (2001). Complexity classification of boolean constraint satisfaction problems. In SIAM monographs on discrete mathematics and applications (Vol. 7). Philadelphia: SIAM.

    Google Scholar 

  13. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann.

    Google Scholar 

  14. Deineko, V., Jonsson, P., Klasson, M., & Krokhin, A. (2008). The approximability of Max CSP with fixed-value constraints. Journal of the ACM 55(4).

  15. Feige, U., Mirrokni, V. S., & Vondrák, J. (2007). Maximizing non-monotone submodular functions. In Proceedings of the 48th annual IEEE symposium on foundations of computer science (FOCS’07). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  16. Freedman, D., & Drineas, P. (2005). Energy minimization via graph cuts: Settling what is possible. In IEEE computer society conference on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  17. Gallo, G., & Simeone, B. (1988). On the supermodular knapsack problem. Mathematical Programming, 45, 295–309.

    Article  MathSciNet  Google Scholar 

  18. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  19. Goldberg, A., & Tarjan, R. (1988). A new approach to the maximum flow problem. Journal of the ACM, 35, 921–940.

    Article  MATH  MathSciNet  Google Scholar 

  20. Gutin, G., Rafiey, A., Yeo, A., & Tso, M. (2006). Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics, 154, 881–889.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hammer, P. L. (1965). Some network flow problems solved with pseudo-Boolean programming. Operations Research, 13, 388–399.

    Article  MathSciNet  Google Scholar 

  22. Iwata, S. (2008). Submodular function minimization. Mathematical Programming, 112, 45–64.

    Article  MATH  MathSciNet  Google Scholar 

  23. Iwata, S., & Orlin, J. B. (2009). A simple combinatorial algorithm for submodular function minimization. In Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms (SODA).

  24. Jeavons, P., Cohen, D., & Cooper, M. (1998). Constraints, consistency and closure. Artificial Intelligence, 101(1–2), 251–265.

    Article  MATH  MathSciNet  Google Scholar 

  25. Jonsson, P., Klasson, M., & Krokhin, A. (2006). The approximability of three-valued MAX CSP. SIAM Journal on Computing, 35(6), 1329–1349.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kohli, P., Kumar, M. P., & Torr, P. H. S. (2007). P3 & beyond: Solving energies with higher order cliques. In IEEE computer society conference on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  27. Kohli, P., Ladický, L., & Torr, P. (2009). Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision, 82(3), 302–324.

    Article  Google Scholar 

  28. Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 147–159.

    Article  Google Scholar 

  29. Lan, X., Roth, S., Huttenlocher, D. P., & Black, M. J. (2006). Efficient belief propagation with learned higher-order Markov random fields. In Proceedings of the 9th European conference on computer vision (ECCV), Part II. Lecture notes in computer science (Vol. 3952). Springer: Springer.

    Google Scholar 

  30. Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University Press.

    Google Scholar 

  31. Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences, 7, 95–132.

    Article  MathSciNet  Google Scholar 

  32. Nemhauser, G., & Wolsey, L. (1988). Integer and combinatorial optimization. New York: Wiley.

    MATH  Google Scholar 

  33. Orlin, J. B. (2009). A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming, 118, 237–251.

    Article  MATH  MathSciNet  Google Scholar 

  34. Paget, R., & Longstaff, I. D. (1998). Texture synthesis via a noncausal nonparametric multiscale Markov random field. IEEE Transactions on Image Processing, 7(6), 925–931.

    Article  Google Scholar 

  35. Ramalingam, S., Kohli, P., Alahari, K., & Torr, P. (2008). Exact inference in multi-label CRFs with higher order cliques. In IEEE computer society conference on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  36. Rhys, J. (1970). A selection problem of shared fixed costs and network flows. Management Science, 17(3), 200–207.

    Article  MATH  Google Scholar 

  37. Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). The handbook of constraint programming. Amsterdam: Elsevier.

    Google Scholar 

  38. Roth, S., & Black, M. J. (2005). Fields of experts: A framework for learning image priors. In IEEE computer society conference on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  39. Rother, C., Kohli, P., Feng, W., & Jia, J. (2009). Minimizing sparse higher order energy functions of discrete variables. In IEEE computer society conference on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  40. Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy problems. In Proceedings of the 14th international joint conference on artificial intelligence (IJCAI).

  41. Schrijver, A. (2000). A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B, 80, 346–355.

    Article  MATH  MathSciNet  Google Scholar 

  42. Schrijver, A. (2003). Combinatorial optimization: Polyhedra and efficiency. In Algorithms and combinatorics (Vol. 24). New York: Springer.

    Google Scholar 

  43. Werner, T. (2007). A linear programming approach to Max-Sum problem: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1165–1179.

    Article  Google Scholar 

  44. Zalesky, B. (2003). Efficient determination of Gibbs estimators with submodular energy functions. arXiv:math/0304041v1, version February 2008.

  45. Živný, S., Cohen, D. A., & Jeavons, P. G. (2009). The expressive power of binary submodular functions. Discrete Applied Mathematics, 157(15), 3347–3358.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Živný.

Additional information

A preliminary version of this paper appeared in Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming (CP), 2008, pp. 112–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Živný, S., Jeavons, P.G. Classes of submodular constraints expressible by graph cuts. Constraints 15, 430–452 (2010). https://doi.org/10.1007/s10601-009-9078-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-009-9078-z

Keywords

Navigation