Compiling finite linear CSP into SAT

Abstract

In this paper, we propose a new method to encode Constraint Satisfaction Problems (CSP) and Constraint Optimization Problems (COP) with integer linear constraints into Boolean Satisfiability Testing Problems (SAT). The encoding method (named order encoding) is basically the same as the one used to encode Job-Shop Scheduling Problems by Crawford and Baker. Comparison x ≤ a is encoded by a different Boolean variable for each integer variable x and integer value a. To evaluate the effectiveness of this approach, we applied the method to the Open-Shop Scheduling Problems (OSS). All 192 instances in three OSS benchmark sets are examined, and our program found and proved the optimal results for all instances including three previously undecided problems.

References

  1. 1.

    Apple Computer Inc. (2004). Xgrid guide. Cupertino: Apple Computer Inc.

    Google Scholar 

  2. 2.

    Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & OR, 32, 1565–1591.

    Article  Google Scholar 

  3. 3.

    Brucker, P., Hurink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43–59.

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Crawford, J. M., & Baker, A. B. (1994). Experimental results on the application of satisfiability algorithms to scheduling problems. In Proceedings of the 12th national conference on artificial intelligence (AAAI-94) (pp. 1092–1097).

  5. 5.

    de Kleer, J. (1989). A comparison of ATMS and CSP techniques. In Proceedings of the 11th international joint conference on artificial intelligence (IJCAI 89) (pp. 290–296).

  6. 6.

    Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Proceedings of the 6th international conference on theory and applications of satisfiability testing (SAT 2003) (pp. 502–518).

  7. 7.

    Ernst, M. D., Millstein, T. D., & Weld, D. S. (1997). Automatic SAT-compilation of planning problems. In Proceedings of the 15th international joint conference on artificial intelligence (IJCAI 97) (pp. 1169–1177).

  8. 8.

    Gent, I. P. (2002). Arc consistency in SAT. In Proceedings of the 15th european conference on artificial intelligence (ECAI 2002) (pp. 121–125).

  9. 9.

    Guéret, C., & Prins, C. (1999). A new lower bound for the open-shop problem. Annals of Operations Research, 92, 165–183.

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Hoos, H. H. (1999). SAT-encodings, search space structure, and local search performance. In Proceedings of the 16th international joint conference on artificial intelligence (IJCAI 99) (pp. 296–303).

  11. 11.

    Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., & Tamura, N. (2006). A competitive and cooperative approach to propositional satisfiability. Discrete Applied Mathematics, 154, 2291–2306.

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Iwama, K., & Miyazaki, S. (1994). SAT-variable complexity of hard combinatorial problems. In Proceedings of the IFIP 13th world computer congress (pp. 253–258).

  13. 13.

    Jussien, N., & Lhomme, O. (2002). Local search with constraint propagation and conflict-based heuristics. Artificial Intelligence, 139, 21–45.

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Kautz, H. A., McAllester, D. A., & Selman, B. (1996). Encoding plans in propositional logic. In Proceedings of the 5th international conference on principles of knowledge representation and reasoning (KR’96) (pp. 374–384).

  15. 15.

    Laborie, P. (2005). Complete MCS-based search: Application to resource constrained project scheduling. In Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI-05) (pp. 181–186).

  16. 16.

    Li, C. M., & Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems. In Proceedings of the fifteenth international joint conference on artificial intelligence (IJCAI 97) (pp. 366–371).

  17. 17.

    Marques-Silva, J. P., & Sakallah, K. A. (1999). GRAPS: A search algorithm for propositional satisfiability. IEEE Transactions on Computers, 48, 506–521.

    Article  MathSciNet  Google Scholar 

  18. 18.

    Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th design automation conference (DAC 2001) (pp. 530–535).

  19. 19.

    Nabeshima, H., Soh, T., Inoue, K., & Iwanuma, K. (2006). Lemma reusing for SAT based planning and scheduling. In Proceedings of the international conference on automated planning and scheduling 2006 (ICAPS’06) (pp. 103–112).

  20. 20.

    Selman, B., Kautz, H. A., & Cohen, B. (1996). Local search strategies for satisfiability testing. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 26, 521–532.

    Google Scholar 

  21. 21.

    Soh, T., Inoue, K., Banbara, M., & Tamura, N. (2005). Experimental results for solving job-shop scheduling problems with multiple SAT solvers. In Proceedings of the 1st international workshop on distributed and speculative constraint processing (DSCP’05).

  22. 22.

    Taillard, E. D. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64, 278–285.

    MATH  Article  Google Scholar 

  23. 23.

    Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. (2006). Compiling finite linear CSP into SAT. In Proceedings of the 12th international conference on principles and practice of constraint programming (CP 2006) (pp. 590–603).

  24. 24.

    Walsh, T. (2000). SAT v CSP. In Proceedings of the 6th international conference on principles and practice of constraint programming (CP 2000) (pp. 441–456).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Tamura.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Tamura, N., Taga, A., Kitagawa, S. et al. Compiling finite linear CSP into SAT. Constraints 14, 254–272 (2009). https://doi.org/10.1007/s10601-008-9061-0

Download citation

Keywords

  • Constraint satisfaction problems
  • SAT encoding
  • Open-shop scheduling problems