Skip to main content
Log in

A parametric filtering algorithm for the graph isomorphism problem

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

We introduce a new filtering algorithm, called IDL(d)-filtering, for a global constraint dedicated to the graph isomorphism problem—the goal of which is to decide if two given graphs have an identical structure. The basic idea of IDL(d)-filtering is to label every vertex with respect to its relationships with other vertices around it in the graph, and to use these labels to filter domains by removing values that have different labels. IDL(d)-filtering is parameterized by a positive integer value d which gives a limit on the distance between a vertex to be labelled and the set of vertices considered to build its label. We experimentally compare different instantiations of IDL(d)-filtering with state-of-the-art dedicated algorithms and show that IDL(d)-filtering is more efficient on regular sparse graphs and competitive on other kinds of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer algorithms. Redwood City: Addison Wesley.

    MATH  Google Scholar 

  2. Barabasi, A.-L. (2003). Linked: How everything is connected to everything else and what it means. New York: Plume.

    Google Scholar 

  3. Bessière, C., & Van Hentenryck, P. (2003). To be or not to be. A global constraint. In CP’03. Kinsale, Ireland (pp. 789–794). New York: Springer.

    Google Scholar 

  4. Champin, P.-A., & Solnon, C. (2003). Measuring the similarity of labeled graphs. In 5th International conference on case-based reasoning (ICCBR 2003). Lecture notes in artificial intelligence (Vol. 2689, pp. 80–95). New York: Springer.

    Google Scholar 

  5. Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2004). A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1367–1372.

    Article  Google Scholar 

  6. Darga, P. T., Liffiton, M. H., Sakallah, K. A., & Markov, I. L. (2004). Exploiting structure in symmetry detection for cnf. In DAC (pp. 530–554). Piscataway: IEEE.

    Chapter  Google Scholar 

  7. Foggia, P., Sansone, C., & Vento, M. (2001). A performance comparison of five algorithms for graph isomorphism. In 3rd IAPR-TC15 workshop on graph-based representations in pattern recognition (pp. 188–199). Cuen.

  8. Fortin, S. (1996). The graph isomorphism problem. Technical report, Dept. of Computing Science, Univ. Alberta, Edmonton, Alberta, Canada.

  9. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability : A guide to the theory of NP-completness. San Francisco: W. H. Freeman.

    Google Scholar 

  10. Hopcroft, J. E., & Wong, J.-K. (1974). Linear time algorithm for isomorphism of planar graphs. In 6th annual ACM symposium on the theory of computing (pp. 172–184).

  11. ILOG, S. A. (2000). ILOG Solver 5.0 user’s manual and reference manual.

  12. Laburthe, F., & OCRE (2000). CHOCO: Implementing a CP kernel. In Proc. of the CP’2000 workshop on techniques for implementing constraint programming systems. Singapore.

  13. Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer System Science, 25, 42–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. McGregor, J. J. (1979). Relational con sistency algorithms and their applications in finding subgraph and graph isomorphisms. Information Science, 19, 229–250.

    Article  MATH  MathSciNet  Google Scholar 

  15. McKay, B. D. (1981). Practical graph isomorphism. Congressus Numerantium, 30, 45–87.

    MathSciNet  Google Scholar 

  16. Puget, J.-F. (2005). Automatic detection of variable and value symmetries. Principles and practice of constraint programming - CP 2005, 3709, 475–489.

    Article  Google Scholar 

  17. Régin, J.-C. (1995). Développement d’Outils Algorithmiques pour l’Intelligence Artificielle. Application à la Chimie Organique. Ph.D. thesis, Univ. Montpellier II.

  18. Schmidt, D., & Druffel, L. (1976). A fast backtracking algorithm to test directed graphs for isomorphism using distance matrices. Journal of the ACM (JACM), 23(3), 433–445.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sorlin, S., & Solnon, C. (2004). A global constraint for graph isomorphism problems. In The 6th international conference on integration of AI and OR techniques in constraint programming for combinatorial optimisation problems (CP-AI-OR 2004), number 3011 in LNCS (pp. 287–301). Avril: Springer.

    Google Scholar 

  20. Sorlin, S., & Solnon, C. (2007). A new filtering algorithm for the graph isomorphism problem. Constraint propagation and implementation. In F. Benhamou, N. Jussien, & B. O’Sullivan (Eds.), Trends in constraint programming (pp. 103–107). Washington, DC: ISTE.

    Google Scholar 

  21. Tsang, E. (1993). Foundations of constraint satisfaction. London: Academic.

    Google Scholar 

  22. Ullman, J. D. (1976). An algorithm for subgraph isomorphism. Journal of the Association of Computing Machinery, 23(1), 31–42.

    MATH  Google Scholar 

  23. Van Hentenryck, P., Simonis, H., & Dincbas, M. (1992). Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58(1–3), 113–159.

    Article  MATH  MathSciNet  Google Scholar 

  24. Zampelli, S., Deville, Y., & Dupont, P. (2006). Elimination des symétries pour l’appariement de graphes. In L. Henocque (Ed.), JFPC’06, Deuxièmes Journées Francophones de Programmation par Contraintes (pp. 357–367).

  25. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., & Dupont, P. (2007). Filtering for subgraph isomorphism. In Principles and practice of constraint programming (CP’2007), number 4741 in LNCS (pp. 728–742). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Solnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorlin, S., Solnon, C. A parametric filtering algorithm for the graph isomorphism problem. Constraints 13, 518–537 (2008). https://doi.org/10.1007/s10601-008-9044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-008-9044-1

Keywords

Navigation