Skip to main content
Log in

Local Search-based Hybrid Algorithms for Finding Golomb Rulers

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adenso-Díaz, B., & Laguna, M. (2006). Fine tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99–114.

    Article  Google Scholar 

  2. Babcock, W. C. (1953). Intermodulation interference in radio systems. Bell Systems Technical Journal, 32, 63–73.

    Google Scholar 

  3. Barták, R. (2003). Practical constraints: A tutorial on modelling with constraints. In J. Figwer (Ed.), 5th workshop on constraint programming for decision and control (pp. 7–17). Poland: Gliwice.

    Google Scholar 

  4. Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6, 154–160.

    MATH  Google Scholar 

  5. Bierwirth, C., Mattfeld, D.C., & Watson, J.-P. (2004). Landscape regularity and random walks for the job shop scheduling problem. In J. Gottlieb, & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture Notes in Computer Science, Vol. 3004 (pp. 21–30). Berlin: Springer.

    Google Scholar 

  6. Birattari, M., Stützle, T. Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Lagndon et al. (Eds.), 2002 Genetic and evolutionary computation conference (GECCO) (pp. 11–18). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  7. Biraud, F., Blum, E., & Ribes, J. (1974). On optimum synthetic linear arrays with applications to radioastronomy. IEEE Transactions on Antennas and Propagation, 22(1), 108–109.

    Article  Google Scholar 

  8. Bloom, G. S., & Golomb, S. W. (1977). Aplications of numbered undirected graphs. Proceedings of the IEEE, 65(4), 562–570.

    Article  Google Scholar 

  9. Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters, 16, 101–113.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cotta, C., Dotú, I., Fernández, A. J., & Van Hentenryck, P. (2006). A memetic approach to golomb rulers. In T. P. Runarsson et al. (Eds.), Parallel problem solving from nature IX. Lecture notes in computer science, vol. 4193 (pp. 252–261). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  11. Cotta, C., & Fernández, A. J. (2004.) A hybrid GRASP-evolutionary algorithm approach to Golomb ruler search. In Xin Yao et al. (Eds.), Parallel problem solving from nature VIII. Lecture notes in computer science, vol. 3242 (pp. 481–490). Berlin Heidelberg: Springer.

    Google Scholar 

  12. Cotta, C., & Fernández, A. J. (2005). Analyzing fitness landscapes for the optimal Golomb ruler problem. In J. Gottlieb & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol. 3248 (pp. 68–79). Berlin Heidelberg: Springer.

    Google Scholar 

  13. Cotta, C., & Troya, J. M. (2003). Embedding branch and bound within evolutionary algorithms. Applied Intelligence, 18(2), 137–153.

    Article  MATH  Google Scholar 

  14. Díaz, D., & Codognet, P. (2000). GNU Prolog: Beyond compiling Prolog to C. In E. Pontelli, & V. Santos Costa (Eds.), 2nd International workshop on practical aspects of declarative languages (PADL’2000). Lecture notes in computer science, vol. 1753 (pp. 81–92). Boston, MA: Springer.

    Google Scholar 

  15. Dewdney, A. K. (1985). The search for an invisible ruler that will help radio astronomers measure the Earth, computer recreations. Scientific American, Dec: 16–26.

  16. Dollas, A., Rankin, W. T., & McCracken, D. (1998). A new algorithm for Golomb ruler derivation and proof of the 19 mark ruler. IEEE Transactions on Information Theory, 44, 379–382.

    Article  MATH  MathSciNet  Google Scholar 

  17. Dotú, I., & Van Hentenryck, P. (2005). A simple hybrid evolutionary algorithm for finding golomb rulers. In D. W. Corne et al. (Eds.), 2005 Congress on evolutionary computation (CEC2005), vol. 3 (pp. 2018–2023). Edinburgh, Scotland: IEEE.

    Chapter  Google Scholar 

  18. Fang, R. J. F., & Sandrin, W. A. (1977). Carrier frequency assignment for non-linear repeaters. Comsat Technical Review, 7, 227–245.

    Google Scholar 

  19. Feeney, B. (2003) Determining Optimum and Near-optimum Golomb Rulers Using Genetic Algorithms. Master thesis, Computer Science, University College Cork (October).

  20. Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.

    Article  MATH  MathSciNet  Google Scholar 

  21. Galinier, P., Jaumard, B., Morales, R., & Pesant, G. (2001). A constraint-based approach to the Golomb ruler problem. In 3rd International workshop on integration of AI and OR techniques (CP-AI-OR’2001).

  22. Garry, M., Vanderschel, D., et al. (1999). In search of the optimal 20, 21 & 22 mark Golomb rulers. GVANT project. http://members.aol.com/golomb20/index.html.

  23. Gilbert, P., & Postpischil, E. (1994). There are no new homometric Golomb ruler pairs with 12 marks or less. Experimental Mathematics, 3(2), 147–152.

    MATH  MathSciNet  Google Scholar 

  24. Giraud-Carrier, C. (2002). Unifying learning with evolution through Baldwinian evolution and lamarckism: A case study. In H-J. Zimmermann, G. Tselentis, M. van Someren, & G. Dounias (Eds.), Advances in computational intelligence and learning: Methods and applications (pp. 159–168). Kluwer.

  25. Glover, F. (1989a). Tabu search—Part I. ORSA Journal of Computing, 1(3), 190–206.

    MATH  MathSciNet  Google Scholar 

  26. Glover, F. (1989b). Tabu search—Part II. ORSA Journal of Computing, 2(1), 4–31.

    Google Scholar 

  27. Glover, F. (1997). A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363, 13–54.

    Google Scholar 

  28. Goldberg, D. E., & Lingle Jr., D. E., (1985). Alleles, loci and the traveling salesman problem. In J. J. Grefenstette (Ed.), Proceedings of an international conference on genetic algorithms. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  29. Houck, C., Joines, J. A., Kay, M. G., & Wilson, J. R. (1997). Empirical investigation of the benefits of partial lamarckianism. Evolutionary Computation, 5(1), 31–60.

    Google Scholar 

  30. Jain, A. K., Murty, N. M., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  31. Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. Thesis, Santa Fe Institute, University of New Mexico, Alburquerque (May).

  32. Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In L. J. Eshelman (Ed.), Proceedings of the 6th international conference on genetic algorithms (pp. 184–192). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  33. Julstrom, B. A. (1999). Comparing darwinian, baldwinian, and lamarckian search in a genetic algorithm for the 4-cycle problem. In S. Brave, & A.S. Wu. (Ed.), Late breaking papers at the 1999 genetic and evolutionary computation conference, Orlando, FL (pp. 134–138).

  34. Klove, T. (1989). Bounds and construction for difference triangle sets. IEEE Transactions on Information Theory, 35, 879–886 (July).

    Article  MathSciNet  Google Scholar 

  35. Laguna, M., & Martí, R. (2003). Scatter search. Methodology and implementations in C. Boston, MA: Kluwer.

    Google Scholar 

  36. Lehmann, E. L., & D’Abrera, H. J. M. (1998). Nonparametrics: Statistical methods based on rRanks. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  37. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In 5-th Berkeley symposium on mathematical statistics and probability, vol. 1 (pp. 281–297). Berkeley: University of California Press.

    Google Scholar 

  38. Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness landscape. In R. K. Belew, & L. B. Booker (Eds.), Proceedings of the fourth international conference on genetic algorithms (pp. 143–150). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  39. McCracken, D. (1991). Minimum redundancy linear arrays. Senior Thesis, Duke University, Durham, NC (January).

  40. Mirchandani, P., & Francis, R. (1990). Discrete location theory. New York: Wiley.

    MATH  Google Scholar 

  41. Moscato, P. (1999). Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 219–234). Maidenhead, Berkshire, UK: McGraw-Hill.

    Google Scholar 

  42. Moscato, P. & Cotta, C. (2003). A gentle introduction to memetic algorithms. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 105–144). Boston, MA: Kluwer.

    Chapter  Google Scholar 

  43. Moscato, P., & Cotta, C. (2007). Memetic algorithms. In T. González (Ed.), Handbook of approximation algorithms and metaheuristics, chapter 27 (pp. 27-1–27-12). New York: Taylor & Francis.

    Google Scholar 

  44. Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In G. C. Onwubolu, & B. V. Babu (Eds.), New optimization techniques in engineering (pp. 53–85). Berlin Heidelberg: Springer.

    Google Scholar 

  45. OGR project (1998). http://www.distributed.net/ogr/, on-going since September 14, 1998.

  46. Pereira, F. B., Tavares, J., & Costa, E. (2003). Golomb rulers: The advantage of evolution. In F. Moura-Pires, & S. Abreu (Eds.), Progress in artificial intelligence, 11th Portuguese conference on artificial intelligence. Lecture notes in computer science, vol. 2902 (pp. 29–42). Berlin Heidelberg: Springer.

    Google Scholar 

  47. Prais, M., & Ribeiro, C. C. (2000a). Parameter variation in GRASP procedures. Investigación Operativa, 9, 1–20.

    Google Scholar 

  48. Prais, M., & Ribeiro, C. C. (2000b). Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing, 12, 164–176.

    Article  MATH  MathSciNet  Google Scholar 

  49. Prestwich, S. (2001). Trading completeness for scalability: Hybrid search for cliques and rulers. In Third international workshop on the integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-01), Ashford, Kent, England (pp. 159–174).

  50. Radcliffe, N. J. (1991). Equivalence class analysis of genetic algorithms. Complex Systems, 5, 183–205.

    MATH  MathSciNet  Google Scholar 

  51. Rankin, W. T. (1993). Optimal Golomb rulers: An exhaustive parallel search implementation. Master Thesis, Duke University Electrical Engineering Dept., Durham, NC (December).

  52. Reeves, C. (1999). Landscapes, operators and heuristic search. Annals of Operational Research, 86, 473–490.

    Article  MATH  MathSciNet  Google Scholar 

  53. Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston, MA: Kluwer.

    Chapter  Google Scholar 

  54. Robbins, J., Gagliardi, R., & Taylor, H. (1987). Acquisition sequences in PPM communications. IEEE Transactions on Information Theory, 33, 738–744.

    Article  Google Scholar 

  55. Robinson, J. P., & Bernstein, A. J. (1967). A class of binary recurrent codes with limited error propagation. IEEE Transactions on Information Theory, 13, 106–113.

    Article  MATH  Google Scholar 

  56. Schneider, W. (2002). Golomb rulers. MATHEWS: The archive of recreational mathematics. http://www.wschnei.de/number-theory/golomb-rulers.html.

  57. Shearer, J. B. (1990). Some new optimum Golomb rulers. IEEE Transactions on Information Theory, 36, 183–184 (January).

    Article  MathSciNet  Google Scholar 

  58. Shearer, J. B. (2001). Golomb ruler table. Mathematics Department, IBM Research. http://www.research.ibm.com/people/s/shearer/grtab.html.

  59. Smith, B.M., & Walsh, T. (1999). Modelling the Golomb ruler problem. In Workshop on non-binary constraints (IJCAI’99), Stockholm.

  60. Soliday, S. W., Homaifar, A., & Lebby, G. L. (1995). Genetic algorithm approach to the search for Golomb rulers. In L. J. Eshelman (Ed.), 6th International conference on genetic algorithms (ICGA’95) (pp. 528–535). Pittsburgh, PA: Morgan Kaufmann.

    Google Scholar 

  61. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Ed.), 6th International congress on genetics, vol. 1 (pp. 356–366). Menasha, WI: Brooklyn Botanic Garden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotta, C., Dotú, I., Fernández, A.J. et al. Local Search-based Hybrid Algorithms for Finding Golomb Rulers. Constraints 12, 263–291 (2007). https://doi.org/10.1007/s10601-007-9020-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9020-1

Keywords

Navigation