Skip to main content
Log in

A Rigorous Global Filtering Algorithm for Quadratic Constraints*

  • Original Article
  • Published:
Constraints Aims and scope Submit manuscript


This article introduces a new filtering algorithm for handling systems of quadratic equations and inequations. Such constraints are widely used to model distance relations in numerous application areas ranging from robotics to chemistry. Classical filtering algorithms are based upon local consistencies and thus, are often unable to achieve a significant pruning of the domains of the variables occurring in quadratic constraint systems. The drawback of these approaches comes from the fact that the constraints are handled independently. We introduce here a global filtering algorithm that works on a tight linear relaxation of the quadratic constraints. The Simplex algorithm is then used to narrow the domains. Since most implementations of the Simplex work with floating point numbers and thus, are unsafe, we provide a procedure to generate safe linearizations. We also exploit a procedure provided by Neumaier and Shcherbina to get a safe objective value when calling the Simplex algorithm. With these two procedures, we prevent the Simplex algorithm from removing any solution while filtering linear constraint systems. Experimental results on classical benchmarks show that this new algorithm yields a much more effective pruning of the domains than local consistency filtering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Al-Khayyal, F. (1990). Jointly constrained biconvex programming and related problems: An overview. Comput. Math. Appl. 19: 53–62.

    MATH  MathSciNet  Google Scholar 

  2. Al-Khayyal, F., & Falk, J. (1983). Jointly constrained biconvex programming. Math. Oper. Res. 8: 273–286.

    Article  MATH  MathSciNet  Google Scholar 

  3. Audet, C., Hansen, P., Jaumard, B., & Savard, G. (2000). Branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Prog. 87(1): 131–152.

    MATH  MathSciNet  Google Scholar 

  4. Bazarra, M., Sherali, H., & Shetty, C. (1993). Nonlinear Programming: Theory and Algorithms. John Wiley & Sons.

  5. Bellido, A. (1992). Construction of iteration functions for the simultaneous computation of the solutions of equations and algebraic systems. Numer. Algorithms 6(3–4): 317–351.

    MathSciNet  Google Scholar 

  6. Benhamou, F., McAllester, D., & Van-Hentenryck P. (1994). CLP(intervals) revisited. In Proceedings of the International Symposium on Logic Programming, pages 124–138.

  7. COCONUT. (2002). A benchmark for global optimization and constraint satisfaction. Technical report, WWW-document (2002).

  8. Cox, D., Little, J., & O’Shea, D. (1997). Ideals, Varieties, and Algorithms. 2nd edition. New York: Springer-Verlag.

    Google Scholar 

  9. Davis, E. (1987). Constraint propagation with interval labels. J. Artif. Intell. 32: 281–331.

    MATH  Google Scholar 

  10. Didrit, O. (1997). Analyse par intervalles pour l’automatique: Résolution globale et garantie de problèmes non linéaires en robotique et en commande robuste. Ph.D. thesis, Université Parix XI Orsay.

  11. Faltings, B. (1994). Arc consistency for continuous variables. J. Artif. Intell. 60(2): 363–376.

    MathSciNet  Google Scholar 

  12. Granvilliers, L. (2004). RealPaver, Version 0.4,

  13. Hansen, E. R. (1992). Global Optimization Using Interval Analysis. New York: Marcel Dekker.

    MATH  Google Scholar 

  14. Collavizza, H., Delobel, F., & Rueher, M. (1999). Comparing partial consistencies. Reliab. Comput. 5(3): 213–228.

    MATH  MathSciNet  Google Scholar 

  15. IEEE-754. (1985). IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE, New York, Std 754-1985 edition.

  16. Ilog (ed.) (2000a). ILOG CPLEX 7.0, Reference Manual. Ilog.

  17. Ilog (ed.) (2000b). ILOG Solver 5.0, Reference Manual. Ilog.

  18. Jermann, C., Trombettoni, G., Neveu, B., & Rueher, M. (2000). A constraint programming approach for solving rigid geometric systems. In Proceedings of CP’00: Sixth International Conference on “Principles and Practice of Constraint Programming”. Singapore, pages 233–248.

  19. Kearfott, R. B. (1996). Rigorous Global Search: Continous Problems. Kluwer Academic Publishers Group.

  20. Lebbah, Y. (1999). Contibution à la résolution de contraintes par consistance forte. Ph.D. thesis, Ecole des Mines de Nantes, France.

  21. Lebbah, Y., & Lhomme, O. (2002). Accelerating filtering techniques for numeric CSPs’. Artif. Intill. 139(1): 109–132.

    MATH  MathSciNet  Google Scholar 

  22. Lebba, Y., Michel, C., Rueher, M., Daney, D., & Merlet, J. (2205). Efficient and safe global constraints for handling numerical constraint system. SIAM journal of Numerical Analysis p. to appear.

  23. Lebbah, Y., Rueher, M., & Michel, C. (2002). A global filtering algorithm for handling systems of quadratic equations and inequations. Proc. CP’2002, Lect. Notes Comput. Sci. 2470: 109–123.

    Article  Google Scholar 

  24. Lhomme, O. (1993). Consistency techniques for numeric CSPs’. In Proceedings of IJCAI’93, pages 232–238.

  25. Marti, P., & Rueher, M. (1995). A distributed cooperating constraints solving system. Int. J. Artif. Intell. Tools 4(1–2): 93–113.

    Google Scholar 

  26. McCormick, G. (1976). Computability of global solutions to factorable non-convex programs—Part I—Convex underestimating problems. Math. Prog. 10: 147–175.

    MATH  MathSciNet  Google Scholar 

  27. Michel, C., Lebbah, Y., & Rueher, M. (2003). Safe embedding of the Simplex Algorithm in a CSP framework. In Proceedings of 5th Internatinal Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems CPAIOR 2003, CRT, Université de Montréal, pages 210–220.

  28. Neumaier, A., & Shcherbina, O. (2002). Safe bounds in linear and mixed-integer programming. Math. Prog A. 99: 283–296.

    MathSciNet  Google Scholar 

  29. Puget, J., & Van-Hentenryck, P. (1998). A constraints satisfaction approach to a circuit design problem. J. Glob. Optim. 13(1): 75–93.

    MATH  MathSciNet  Google Scholar 

  30. Sherali, H., & Adams, W. (1999). A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishing.

  31. Sherali, H., & Tuncbilek, C. (1992). A global optimization algorithm for polynomial using a reformulation-linearization technique. J. Glob. Optim. 7: 1–31.

    MathSciNet  Google Scholar 

  32. Van-Hentenryck, P., Michel, L., & Deville, Y. (1997). Numerica: a Modelling language for Global Optiization. MIT Press.

  33. Wunderlings, R. (1996). Paralleler und Objektorientierter Simplex-Algorithmus (in German). Ph.D. thesis, Berlin.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yahia Lebbah.

Additional information

*This article is an extended version of [23].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebbah, Y., Michel, C. & Rueher, M. A Rigorous Global Filtering Algorithm for Quadratic Constraints*. Constraints 10, 47–65 (2005).

Download citation

  • Issue Date:

  • DOI: