Skip to main content
Log in

Synthesis and Antioxidant Activity of New N-Containing Hybrid Derivatives of Gallic and Ursolic Acids

  • Published:
Chemistry of Natural Compounds Aims and scope

New hybrid derivatives of ursolic and gallic acids linked through an ethylene linker and containing hydrazide and 1,3,4-oxadiazol-2-thione as terminal substituents were synthesized. Hydrazinolysis of methyl 3-(3β-acetoxyurs-12-en-28-oyloxy)-4,5-dihydroxybenzoate led to cleavage at the triterpenoid C-28-ester bond to produce (3β-acetoxyurs-12-en)-28-oyl hydrazide and methyl gallate. The dioxolane protecting group on the polyphenol moiety was easily removed with retention of the ester on the aromatic moiety during the reaction of hydrazine with methyl 3-(3β-acetoxyurs-12-en-28-oyloxy)-4,5-[(R,S)-methoxymethylenedioxy]benzoate. The new hybrid derivatives of ursolic and gallic acids containing hydrazide and 1,3,4-oxadiazole moieties possessed high antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abbas, F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. Suleria, Int. J. Food Prop., 20, 1689 (2017).

    Article  CAS  Google Scholar 

  2. B. Badhani, N. Sharma, and R. Kakkar, RSC Adv., 5, 27540 (2015).

    Article  CAS  Google Scholar 

  3. I. M. C. Brighente, M. Dias, L. G. Verdi, and M. G. Pizzolatti, Pharm. Biol., 45, 156 (2007).

    Article  CAS  Google Scholar 

  4. J. Gao, J. Hu, D. Hu, and X. Yang, Nat. Prod. Commun., 14, (2019); DOI: https://doi.org/10.1177/1934578X19874174.

  5. N. A. Al, R. M. El-Shishtawy, and A. M. Asiri, Eur. J. Med. Chem., 204, 112609 (2020).

    Article  Google Scholar 

  6. S. H. Lone, S. U. Rehman, and K. A. Bhat, Drug Res. (Stuttgart, Ger.), 11, 111 (2017).

    Google Scholar 

  7. C. Frey, M. Pavani, G. Cordano, S. Munoz, E. Rivera, J. Medina, A. Morello, J. Diego Maya, and J. Ferreira, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 146, 520 (2007).

    Article  Google Scholar 

  8. Y.-M. Chiang, J.-Y. Chang, C.-C. Kuo, C.-Y. Chang, and Y.-H. Kuo, Phytochemistry, 66, 495 (2005).

    Article  CAS  Google Scholar 

  9. A. M. Pironi, P. R. de Araujo, M. A. Fernandes, H. R. N. Salgado, and M. Chorilli, Crit. Rev. Anal. Chem., 48, 86 (2018).

    Article  CAS  Google Scholar 

  10. J. Liobikas, D. Majiene, S. Trumbeckaite, L. Kursvietiene, R. Masteikova, D. M. Kopustinskiene, A. Savickas, and J. Bernatoniene, J. Nat. Prod., 74, 1640 (2011).

    Article  CAS  Google Scholar 

  11. V. Khwaza, O. O. Oyedeji, and B. A. Aderibigbe, Int. J. Mol. Sci., 21, 5920 (2020).

    Article  CAS  Google Scholar 

  12. X. Zhang, T. Li, E. S. Gong, and R. H. Liu, J. Agric. Food Chem., 68, 7404 (2020).

    Article  CAS  Google Scholar 

  13. R. Checker, S. K. Sandur, D. Sharma, R. S. Patwardhan, S. Jayakumar, V. Kohli, G. Sethi, B. B. Aggarwal, and K. B. Sainis, PLoS One, 7 (2), e31318 (2012).

    Article  CAS  Google Scholar 

  14. S. Habtemariam, Oxid. Med. Cell. Longevity, 2019 (2019); DOI: https://doi.org/10.1155/2019/8512048.

  15. J.-L. Rios, J. Ethnopharmacol., 128, 1 (2010).

    Article  CAS  Google Scholar 

  16. S. A. Popov, C. Wang, Z. Qi, E. E. Shults, and M. Turks, Synth. Commun., 2466 (2021).

  17. N. Mihailovic, V. Markovic, I. Z. Matic, N. S. Stanisavljevic, Z. S. Jovanovic, S. Trifunovic, and L. Joksovic, RSC Adv., 7, 8550 (2017).

    Article  CAS  Google Scholar 

  18. A. M. Rabie, A. S. Tantawy, and S. M. I. Badr, Am. J. Org. Chem., 6, 54 (2016).

    Article  CAS  Google Scholar 

  19. A. Widjaja, T.-H. Yeh, and Y.-H. Ju, J. Chin. Inst. Chem. Eng., 39, 413 (2008).

    Article  CAS  Google Scholar 

  20. S. Sang, K. Lapsley, R. T. Rosen, and C.-T. Ho, J. Agric. Food Chem., 50, 607 (2002).

    Article  CAS  Google Scholar 

  21. A. V. Tkachev and A. Y. Denisov, Tetrahedron, 50, 2591 (1994).

    Article  CAS  Google Scholar 

  22. Y. Kotaiah, N. Harikrishna, K. Nagaraju, and C. Venkata Rao, Eur. J. Med. Chem., 58, 340 (2012).

    Article  CAS  Google Scholar 

  23. P. Kanimozhi and N. R. Prasad, Environ. Toxicol. Pharmacol., 28, 192 (2009).

    Article  CAS  Google Scholar 

  24. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Free Radical Biol. Med., 26, 1231 (1999).

    Article  CAS  Google Scholar 

  25. S. A. Popov, M. D. Semenova, D. S. Baev, T. S. Frolova, E. E. Shults, C. Wang, and M. Turks, Steroids, 153, 108524 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was performed in the framework of Project ERA.Net RUS Plus No. RUS_ST2017-139 AnticancerBet (financial support from RFBR Project 18-53-76001), Federal Programs AAAA-A21-121011490016-8 and AAAA-A21-121011490015-1, and Grant 32101472 from the Chinese National Natural Sciences Foundation. We thank the Chemical Research Center for Common Use, SB, RAS, for spectral and analytical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Popov.

Additional information

Translated from Khimiya Prirodnykh Soedinenii, No. 6, November–December, 2021, pp. 893–897.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, S.A., Wang, C., Qi, Z. et al. Synthesis and Antioxidant Activity of New N-Containing Hybrid Derivatives of Gallic and Ursolic Acids. Chem Nat Compd 57, 1042–1046 (2021). https://doi.org/10.1007/s10600-021-03546-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-021-03546-0

Keywords

Navigation