Skip to main content
Log in

Antimicrobial Metabolites from Extremophilic Fungus Botryotrichum piluliferum Strain WESH19

  • Published:
Chemistry of Natural Compounds Aims and scope

Chromatographic analysis of a crude ethyl acetate (EtOAc) extract derived from a solid rice culture incubated at 40°C to mimic the natural ecological niche of the extremophilic fungus Botryotrichum piluliferum strain WESH19 yielded a new natural butenolide compound (1) together with three known metabolites (2–4). Chemical structures of the isolated metabolites were confirmed by HR-ESI-MS along with 1D and 2D NMR spectroscopic analyses. Compounds 1–3 revealed pronounced antimicrobial activities against Staphylococcus aureus (ATCC 700699), Enterococcus faecalis (ATCC 29212), and Enterococcus faecium (ATCC 35667), while their antifungal activities were assessed against the extremophilic fungus Penicillium simplicissimum strain WSH17 (GenBank Acc. No. MN055685). This study adds another example of how extreme environmental conditions may influence secondary metabolism of the inhabiting fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. G. F. Bills and J. B. Gloer, Biologically Active Secondary Metabolites from the Fungi, in: The Fungal Kingdom, J. Heitman, B. J. Howlett, P. W. Crous, E. H. Stukenbrock, T. Y. James, and N. A. R. Gow (eds.), American Society of Microbiology, Sterling, USA, 2017, pp. 1087–1119.

  2. R. Orellana, C. Macaya, G. Bravo, F. Dorochesi, A. Cumsille, R. Valencia, C. Rojas, and M. Seeger, Front. Microbiol., 9, 2309 (2018).

    Article  Google Scholar 

  3. R. Maheshwari, G. Bharadwaj, and M. K. Bhat, Microbiol. Mol. Biol. Rev., 64, 461 (2000).

    Article  CAS  Google Scholar 

  4. A. T. Bull, Actinobacteria of the Extremobiosphere, in: Extremophiles, K. Horikosh (ed.), Springer, Japan,Tokyo, 2011, pp. 1203–1240.

  5. P. M. Leung, S. K. Bay, D. V. Meier, E. Chiri, D. A. Cowan, O. Gillor, D. Woebken, and C. Greening, mSystems, 5, e-00495-19 (2020).

  6. S. C. Cary, I. R. McDonald, J. E. Barrett, and D. A. Cowan, Nat. Rev. Microbiol., 8, 129 (2010).

    Article  CAS  Google Scholar 

  7. S. B. Pointing and J. Belnap, Nat. Rev. Microbiol., 10, 551 (2012).

    Article  CAS  Google Scholar 

  8. G. Wang and D. Or, ISME J., 7, 395 (2013).

    Article  CAS  Google Scholar 

  9. T. P. Makhalanyane, A. Valverde, E. Gunnigle, A. Frossard, J. B. Ramond, and D. A. Cowan, FEMS Microbiol. Rev., 39, 203 (2015).

    Article  CAS  Google Scholar 

  10. J. P. Schimel, Annu. Rev. Ecol. Evol. S., 49, 409 (2018).

    Article  Google Scholar 

  11. E. F. DeLong, Nat. Rev. Microbiol., 5, 755 (2007).

    Article  CAS  Google Scholar 

  12. T. K. Mohanta and H. Bae, Biol. Proc. Online, 17, 8 (2015).

    Article  Google Scholar 

  13. S. S. Ebada and W. Ebrahim, Phytochem. Lett., 36, 95 (2020).

    Article  CAS  Google Scholar 

  14. I. Uchida, Y. Itoh, T. Namiki, M. Nishikawa, and M. Hashimoto, Tetrahedron Lett., 27, 2015 (1986).

    Article  CAS  Google Scholar 

  15. T. Namiki, M. Nishikawa, Y. Itoh, I. Uchida, and M. Hashimoto, J. Antibiot., 40, 1400 (1987).

    Article  CAS  Google Scholar 

  16. X. Niu, H.-M. Dahse, K.-D. Menzel, O. Lozach, G. Walther, L. Meijer, S. Grabley, and I. Sattler, J. Nat. Prod., 71, 689 (2008).

    Article  CAS  Google Scholar 

  17. H. Chen, G. Daletos, M. S. Abdel-Aziz, D. Thomy, H. Dai, H. Broetz-Oesterhelt, W. Lin, and P. Proksch, Phytochem. Lett., 12, 35 (2015).

    Article  Google Scholar 

  18. R. R. Parvatkar, C. D’Souza, A. Tripathi, and C. G. Naik, Phytochemistry, 70, 128 (2009).

    Article  CAS  Google Scholar 

  19. T. Namiki, Y. Baba, Y. Suzuki, M. Nishikawa, K. Sawada, Y. Itoh, T. Oku, Y. Kitaura, and M. Hashimoto, Chem. Pharm. Bull., 36, 1404 (1988).

    Article  CAS  Google Scholar 

  20. N. Okamura, H. Haraguchi, K. Hashimoto, and A. Yagi, Phytochemistry, 34, 1005 (1993).

    Article  CAS  Google Scholar 

  21. W.-J. Lan, W. Liu, W.-L. Liang, Z. Xu, X. Le, J. Xu, C.-K. Lam, D.-P. Yang, H.-J. Li, and L.-Y. Wang, Mar. Drugs, 12, 4188 (2014).

    Article  CAS  Google Scholar 

  22. M. M. S. Nagia, M. M. El-Metwally, M. Shaaban, S. M. El-Zalabani, and A. G. Hanna, Org. Med. Chem. Lett., 2, 9 (2012).

    Article  Google Scholar 

  23. R. K. Pettit, Mar. Biotechnol., 13, 1 (2011).

    Article  CAS  Google Scholar 

  24. A. Jaouani, M. Neifar, V. Prigione, A. Ayari, I. Sbissi, S. Ben Amor, S. Ben Tekaya, G. C. Varese, A. Cherif, and M. Gtari, BioMed Res. Int., 2014, 1 (2014).

    Article  Google Scholar 

  25. B. van den Burg, Curr. Opin. Microbiol., 6, 213 (2003).

    Article  Google Scholar 

  26. N. Kostadinova, E. Krumova, S. Tosi, Pashova, and M. Angelova, Biotechnol. Biotechnol. Equip., 23, 267 (2009).

  27. S. S. Ebada and W. Ebrahim, S. Afr. J. Bot., 133 (2020).

  28. Clinical and Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, CLSI Document M27-A3. 3rd Edn., Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2008.

  29. Clinical and Laboratory Standards Institute (CLSI), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 9th Edn., Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2012.

  30. W. Ebrahim, F. C. Ozkaya, and S. S. Ebada, S. Afr. J. Bot., 133, 40 (2020).

Download references

Acknowledgment

The authors are gratefully indebted to Dr. Dalia E. El-Badan (Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt) for valuable microbiological discussions in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weaam Ebrahim or Sherif S. Ebada.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2021, pp. 559–562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim, W., Ebada, S.S. Antimicrobial Metabolites from Extremophilic Fungus Botryotrichum piluliferum Strain WESH19. Chem Nat Compd 57, 654–658 (2021). https://doi.org/10.1007/s10600-021-03443-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-021-03443-6

Keywords

Navigation