Skip to main content
Log in

Synthesis of Methylcytisine 9-Thiocarboxamides

  • Published:
Chemistry of Natural Compounds Aims and scope

9-Carboxamide derivatives of the quinolizidine alkaloid methylcytisine were synthesized. The synthetic pathway included nitration-reduction according to the literature that resulted in 9-amination of the 2-pyridone core of the starting alkaloid. The obtained 9-amino derivative was converted by CS2 in Py in the presence of dicyclohexylcarbodiimide (DCC) into the corresponding isothiocyanate. The synthesized 9-isothio derivative was reacted with primary and secondary amines. The yields of the obtained 9-thiocarboxamide methylcytisine derivatives were 80–98%. The structures of the synthesized compounds were established using elemental analyses and IR, PMR, 13C NMR, and 15N NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Struga, S. Rosolowski, J. Kossakowski, and J. Stefanska, Arch. Pharm. Res., 33, 47 (2010).

    Article  CAS  Google Scholar 

  2. J. M. Vega-Perez, I. Perinan, M. Argandona, M. Vega-Holm, C. Palo-Nieto, E. Burgos-Moron, M. Lopez-Lazaro, C. Vargas, J. J. Nieto, and F. Iglesias-Guerra, Eur. J. Med. Chem., 58, 591 (2012).

    Article  CAS  Google Scholar 

  3. R. P. Modh, A. C. Patel, D. H. Mahajan, C. Pannecouque, E. De Clercq, and K. H. Chikhalia, Arch. Pharm., 345, 964 (2012).

    Article  CAS  Google Scholar 

  4. D. Sriram, P. Yogeeswari, and K. Madhu, Bioorg. Med. Chem. Lett., 16, 876 (2006).

    Article  CAS  Google Scholar 

  5. A. Ranise, A. Spallarossa, S. Schenone, O. Bruno, F. Bondavalli, L. Vargiu, T. Marceddu, M. Mura, P. La Colla, and A. Pani, J. Med. Chem., 46, 768 (2003).

    Article  CAS  Google Scholar 

  6. S. Karakus, S. Guniz Kucukguzel, I. Kucukguzel, E. De Clercq, C. Pannecouque, G. Andrei, R. Snoeck, F. Sahin, and O. F. Bayrak, Eur. J. Med. Chem., 44, 3591 (2009).

    Article  CAS  Google Scholar 

  7. G. Sanna, S. Madeddu, G. Giliberti, S. Piras, M. Struga, M. Wrzosek, G. Kubiak-Tomaszewska, A. E. Koziol, O. Savchenko, T. Lis, J. Stefanska, P. Tomaszewski, M. Skrzycki, and D. Szulczyk, Molecules, 23, 2554/1 (2018).

    Article  Google Scholar 

  8. J. Stefanska, D. Szulczyk, A. E. Koziol, B. Miroslaw, E. Kedzierska, S. Fidecka, B. Busonera, G. Sanna, G. Giliberti, P. La Colla, and M. Struga, Eur. J. Med. Chem., 55, 205 (2012).

    Article  CAS  Google Scholar 

  9. R. V. Modi and D. J. Sen, Int. J. Drug Dev. Res., 2, 512 (2010).

    CAS  Google Scholar 

  10. R. M. Kumbhare, T. Dadmal, U. Kosurkar, V. Sridhar, and J. V. Rao, Bioorg. Med. Chem. Lett., 22, 453 (2012).

    Article  CAS  Google Scholar 

  11. J. Liu, B. Song, H. Fan, P. S. Bhadury, W. Wan, S. Yang, W. Xu, J. Wu, L. Jin, X. Wei, D. Hu, and S. Zeng, Eur. J. Med. Chem., 45, 5108 (2010).

    Article  CAS  Google Scholar 

  12. Ruswanto, Siswandono, M. Richa, N. Tita, and L. Tresna, J. Pharm. Sci. Res., 9, 680 (2017).

    CAS  Google Scholar 

  13. Sh. Sun, J. Zhang, N. Wang, X. Kong, F. Fu, H. Wang, and J. Yao, Molecules, 23, 24/1 (2018).

  14. H. Cheng, B. M. Linhares, W. Yu, M. G. Cardenas, Y. Ai, W. Jiang, A. Winkler, S. Cohen, A. Melnick, A. MacKerell, T. Cierpicki, and F. Xue, J. Med. Chem., 61, 7573 (2018).

    Article  CAS  Google Scholar 

  15. R. Tokala, S. Bale, I. P. Janrao, A. Vennela, N. P. Kumar, Senwar, R. Kishna, Ch. Godugu, and N. Shankaraiah, Bioorg. Med. Chem. Lett., 28, 1919 (2018).

    Article  CAS  Google Scholar 

  16. C.-J. Liu, S.-L. Yu, Y.-P. Liu, X.-J. Dai, Y. Wu, R.-J. Li, and J.-C. Tao, Eur. J. Med. Chem., 115, 26 (2016).

    Article  Google Scholar 

  17. I. V. Kulakov, O. A Nurkenov, A. E. Arinova, D. M. Turdybekov, S. A. Talipov, and B. T. Ibragimov, Chem. Nat. Compd., 47, 777 (2011).

    Article  CAS  Google Scholar 

  18. I. V. Kulakov, O. A. Nurkenov, D. M. Turdybekov, and K. M. Turdybekov, Chem. Nat. Compd., 46, 57 (2010).

  19. I. V. Kulakov, O. A. Nurkenov, D. M. Turdybekov, A. A. Ainabaev, and Z. M. Zhambekov, Russ. J. Org. Chem., 46, 543 (2010).

    Article  CAS  Google Scholar 

  20. I. P. Tsypysheva, A. V. Koval′skaya, N. S. Makara, A. N. Lobov, I. A. Petrenko, E. G. Galkin, T. A. Sapozhnikova, F. S. Zarudii, and M. S. Yunusov, Chem. Nat. Compd., 48, 629 (2012).

    Article  CAS  Google Scholar 

  21. I. P. Tsypysheva, A. V. Koval’skaya, A. N. Lobov, M. Kh. Salimgareeva, U. Sh. Fatkullina, P. R. Petrova, S. F. Gabdrakhmanova, and M. S. Yunusov, Chem. Nat. Compd., 49, 707 (2013).

    Article  CAS  Google Scholar 

  22. V. V. Mozolis and S. P. Iokubaitite, Russ. Chem. Rev., 42, 587 (1973).

    Article  Google Scholar 

  23. I. P. Tsypysheva, A. V. Koval′skaya, A. N. Lobov, E. A. Nikolaeva, and M. S. Yunusov, Chem. Nat. Compd., 49, 902 (2013).

    Article  CAS  Google Scholar 

  24. J. C. Jochims, Chem. Ber., 101, 1746 (1968). 25. J. Buckingham, K. H. Baggaley, A. D. Roberts, and L. F. Szlabo, Dictionary of Alkaloids, 2nd Ed., CRC Press, 2010, 2374 pp.

Download references

Acknowledgment

The work was performed in the framework of a State Task for UfIC, UFRC, RAS, on topics Nos. AAAA-A17-117011910025-6 and AAAA-A17-117011910027-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Tsypysheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, P.R., Koval’skaya, A.V., Lobov, A.N. et al. Synthesis of Methylcytisine 9-Thiocarboxamides. Chem Nat Compd 55, 908–913 (2019). https://doi.org/10.1007/s10600-019-02843-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-019-02843-z

Keywords

Navigation