Skip to main content

Hemisynthesis and Bactericidal Activity of Several Substituted Benzoic Acid Esters of 13(S)-Labdan-8α,15-Diol, a Diterpene from Oxylobus glanduliferus

The diterpene 13(S)-labdan-8α,15-diol (1) was isolated in high yield from Oxylobus glanduliferus, a native species of Venezuelan Andean moorlands. Using this compound (1) as a starting material, it was possible to prepare 12 aromatic esters, which were structurally characterized by analysis of their spectroscopic data (IR, 1D and 2D NMR and MS). The bactericidal activity of these diterpene derivatives was evaluated against four bacterial strains [two Gram-positive and two Gram-negative]: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa.

This is a preview of subscription content, access via your institution.

Fig. 1.

References

  1. 1.

    J. D. Connolly and R. A. Hill, Dictionary of Terpenoids, Vol. I, Chapman and Hall, London, 1991, 677 pp.

  2. 2.

    C. Demetzos and C. Dimas, Labdane-type Diterpenes: Chemistry and Biological Activity, in: Atta-Ur-Rahman (Ed.), Studies in Natural Product Chemistry, Vol. 25, Part F, Elsevier, Amsterdam, 2001, 235 pp.

  3. 3.

    M. Singh, M. Pal, and R. P. Sharma, Planta Med., 65, 2 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    S. A. Heleno, A. Martins, M. J. R. P. Queiroz, and I. C. F. R. Ferreira, Food Chem., 173, 501 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    S. Khadem and R. J. Marles, Molecules, 15, 7985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    J. Gruz, O. Novak, and M. Strnad, Food Chem., 111, 789 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    P. Mattila, J. Hellstrom, and R. Torroten, J. Agric. Food Chem., 54, 7193 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    A. Szajdek and E. J. Borowska, Plant Foods Hum. Nutr., 63, 147 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    T. M. Rababah, N. S. Hettiarachchy, and R. Horax, J. Agric. Food Chem., 52, 5183 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    I. Mudnic, D. Modun, V. Rastija, J. Vukovic, I. Brizic, V, Katalinic, B. Kozina, M. Medic-Saric, and M. Boban, Food Chem., 119, 1205 (2010).

  11. 11.

    A. Del Olmo, J. Calzada, and M. Nunez, Crit. Rev. Food Sci. Nutr., 57, 3084 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    F. A. Tomas-Barberan, and M. N. Clifford, J. Sci. Food Agric., 80, 1024 (2000).

    Article  CAS  Google Scholar 

  13. 13.

    S. Awale, T. Kawakami, Y. Tezuka, J.-Y. Ueda, K. Tanaka, and S. Kadota, Chem. Pharm. Bull., 53, 710 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    J. Conrad, B. Vogler, I. Klaiber, G. Roos, V. Ulrich, and W. Kraus, Phytochemistry, 48, 647 (1998).

    Article  CAS  Google Scholar 

  15. 15.

    A. M. Galal, E. A. Abourashed, S. A. Ross, M. A. ElSohly, M. S. Al-Said, and F. S. El-Feraly, J. Nat. Prod., 64, 399 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Y.-L. Lin, Y.-H. Kuo, M.-C. Cheng, and Y. Wang, Chem. Pharm. Bull., 36, 2642 (1988).

    Article  CAS  Google Scholar 

  17. 17.

    B. Trusheva, I. Todorov, M. Ninova, H. Najdenski, A. Daneshmand, and V. Bankova, Central Chem. J., 4, 8 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    B. F. Rasulev, A. I. Saidkhodzhaev, S. S. Nazrullaev, K. S. Akhmedkhodzhaeva, Z. A. Khushbaktova, and J. Leszczynski, SAR QSAR Environ. Res., 18, 663 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    C. P. Reyes, F. Munoz-Martinez, I. R. Torrecillas, C. R. Mendoza, F. Gamarro, I. L. Bazzocchi, M. J. Nunez, L. Pardo, S. Castanys, M. Campillo, and I. A. Jimenez, J. Med. Chem., 50, 4808 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    S. Kakkar and S. Bais, ISRN Pharmacol., 952943 (2014).

  21. 21.

    K. Fujita and I. Kubo, Int. J. Food Microb., 79, 193 (2002).

    Article  CAS  Google Scholar 

  22. 22.

    J.-G. Choi, S.-H. Mun, H. S. Chahar, P. Bharaj, O.-H. Kang, S.-G. Kim, D.-W. Shin, and D.-H. Kwon, PloSOne, 9, e102697 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    M. Gutierrez-Larrainzar, J. Rua, I. Caro, C. de Castro, D. de Arriaga, M. R. Garcia-Armesto, and P. Pilar del Valle, Food Control, 26, 555 (2012).

    Article  CAS  Google Scholar 

  24. 24.

    I. Kubo, K. Fujita, K. Nihei, and A. Nihei, J. Agric. Food Chem., 52, 1072 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    B. Narasimhan, S. Ohlan, R. Ohlan, V. Judge, and R. Narang, Eur. J. Med. Chem., 44, 689 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    J. M. Amaro and M. Adrian, Rev. Latinoam. Quim, 13, 110 (1982).

    Google Scholar 

  27. 27.

    T. K. Devon and A. I. Scott, Handbook of Naturally Occurring Compounds, Vol. II. Terpenes, Academic Press, New York, 1972, 185 pp.

  28. 28.

    K. Bjamer, G. Ferguson, and R. D. Melville, Acta Crystallogr., B24, 855 (1968).

    Article  Google Scholar 

  29. 29.

    J. L. Rios, M. C. Recio, and A. Villar, J. Ethnopharmacol., 23, 127 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Fund of Science, Technology and Innovation (FONACIT) (Grant No. 201300288) within the framework of the Project PCP France-Venezuela and by the CDCHTA-ULA (Grant No. C-1935-15-08-ED). Thanks are due to Eng. Juan Carmona Arzola, Department of Pharmacognosy and Organic Medicaments, Faculty of Pharmacy and Bioanalysis, University of Los Andes (ULA) for identification of plant material.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Chacon-Morales.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2019, pp. 580–585.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chacon-Morales, P.A., Amaro-Luis, J.M., Rojas Fermin, L.B. et al. Hemisynthesis and Bactericidal Activity of Several Substituted Benzoic Acid Esters of 13(S)-Labdan-8α,15-Diol, a Diterpene from Oxylobus glanduliferus. Chem Nat Compd 55, 677–684 (2019). https://doi.org/10.1007/s10600-019-02777-6

Download citation

Keywords

  • labdanes
  • substituted benzoic acids
  • esterifications
  • NMR
  • bactericidal activity